
ActionScript Bytecode Verification With Co-Logic Programming ∗

Brian W. DeVries
The University of Texas at Dallas

brian.devries@student.utdallas.edu

Gopal Gupta
The University of Texas at Dallas

gupta@utdallas.edu

Kevin W. Hamlen
The University of Texas at Dallas

hamlen@utdallas.edu

Scott Moore
The University of Texas at Dallas
scott.moore@student.utdallas.edu

Meera Sridhar
The University of Texas at Dallas

meera.sridhar@student.utdallas.edu

Abstract
A prototype security policy verification system for Action-
Script binaries is presented, whose implementation lever-
ages recent advances in co-logic programming. Our expe-
rience with co-logic programming indicates that it is an ex-
tremely useful paradigm for elegantly expressing algorithms
that lie at the heart of model-checking technologies. This
results in an unusually small trusted computing base, mak-
ing the verification system well-suited to frameworks like
certifying in-lined reference monitoring systems, which re-
quire small, light-weight verifiers. Preliminary experiments
and progress are discussed.

Categories and Subject Descriptors D.2.4 [Programming
Languages]: Software/Program Verification; D.4.6 [Oper-
ating Systems]: Security and Protection—access controls;
D.3.2 [Programming Languages]: Language Classifications—
constraint and logic languages

General Terms Languages, Security

Keywords ActionScript, Verification, Coinductive Logic
Programming, Model Checking, In-lined Reference Moni-
toring

1. Introduction
ActionScript is a powerful, emerging mobile code language
similar to Java and .NET bytecode. It is rapidly becoming a

∗ This research was supported by AFOSR YIP award number FA9550-
08-1-0044, NSF award DGE 0742477 and an IASP scholarship from the
Department of Defense.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLAS ’09 June 15, Dublin, Ireland.
Copyright c© 2009 ACM 978-1-60558-645-8/09/06. . . $10.00

mainstay of modern web browsing technologies. Recently,
it has also gained popularity as the base language for the
Adobe Integrated Runtime (AIR), a cross-platform environ-
ment that allows third-party code-producers to construct Ac-
tionScript applications for the desktop.

With increased ubiquity comes increased exposure to ma-
licious ActionScript code and therefore a need for protec-
tion systems that defend against it. Already ActionScript has
served as a medium for numerous malware attacks. The first
ActionScript virus (SWF/LFM-926) was identified in 2002,
followed by numerous others including the Troj/SWFexp,
Sus/SWFScene, Troj/SwfDL, and Troj/SWFdldr families of
viruses, to name a few.

Existing security mechanisms for ActionScript and re-
lated technologies (including the ActionScript Virtual Ma-
chine, Flash, Flex, and AIR) mainly fall into two categories:
code-signing and sandboxing. While these suffice for certain
classes of attacks, code-signing places the code-producer
in the Trusted Computing Base (TCB), and sandboxing
enforces only a small class of coarse-grained access con-
trol policies built into the ActionScript virtual machine and
runtime libraries. System- and application-specific policies,
such as those that prohibit write access to files with certain
names, or finer-grained policies that constrain arguments to
individual ActionScript instructions (such as those that facil-
itate buffer overrun attacks) are not supported. Additionally,
to our knowledge there has been little formal work that stud-
ies the language and its security implications, and therefore
few tools for analyzing security vulnerabilities and threats
in ActionScript bytecode binaries. It is therefore desirable to
develop formal analysis techniques that fill this void.

In this paper we report on preliminary work toward devel-
oping an ActionScript verifier, with an LTL model-checker
at its core written using co-logic programming. Co-logic
programming (Co-LP) [30, 13, 4] is a cutting-edge logic pro-
gramming technology that combines tabled and coinductive
logic programming and allows extremely elegant and suc-
cinct formalization of properties defined in terms of least

9

and greatest fixed-points. Such properties lie at the heart of
many model-checking analyses, such as those that regard po-
tentially non-terminating loops. Our work applies this tech-
nology to build an unusually small but powerful Action-
Script verification system, further minimizing the TCB of
our framework.

Our verifier is particularly suited as a certification system
for an ActionScript In-lined Reference Monitoring (IRM)
system, currently under development at the University of
Texas at Dallas. IRM’s [27] enforce safety policies by in-
jecting runtime security guards directly into untrusted bina-
ries. The runtime guards test whether an impending oper-
ation constitutes a policy violation. If so, some corrective
action is taken to prevent the violation, such as halting the
program prematurely. The result is self-monitoring code that
can be safely executed without external monitoring [14].

IRM’s are powerful tools that can enforce a large class
of policies including most safety properties [17], but the
rewriters that in-line guards into the untrusted code can be
large and complex, and therefore potentially difficult to trust.
Certifying IRM systems [16] verify that the output of the
rewriter constitutes a policy-adherent binary. This shifts the
(typically larger) rewriter out of the TCB in favor of a (typi-
cally smaller) verifier.

Our verifier expresses security policies using Linear Tem-
poral Logic (LTL) [23], which extends propositional logic
with temporal operators. LTL underpins many modern soft-
ware model checking technologies, and allows us to conve-
niently draw upon existing techniques from the field. With
LTL, policy writers can specify security policies in a purely
declarative and compositional manner; furthermore, formal
analysis techniques, such as satisfiability checking [25], as-
sist the policy writer in creating semantically valid policies.

The remainder of the paper is structured as follows. Sec-
tion 2 discusses related work. Section 3 gives a detailed
overview of our project, including its high-level design and
main features. Section 4 presents the details of our imple-
mentation. Section 5 discusses the results of a few prelimi-
nary experiments. Finally, Section 6 suggests future work.

2. Related Work
ActionScript was developed by Adobe Systems as a script-
ing language for writing Flash Applications. ActionScript
1.0 was released in 2000 and includes Java-like language
features such as an object model, function calls, dynamic
types, and class inheritance. The most recent version (3.0)
was released in 2006 and introduced a new VM, compile-
time and run-time type checking, packages, namespaces,
regular expressions, and direct access to security-relevant
system resources such as the Flash runtime display list. The
fact that the ActionScript language has become increasingly
sophisticated and is used as the core for an increasing num-
ber of platforms demonstrates that it is an important lan-
guage for language-based security researchers to study.

Prolog is an attractive language for implementing pro-
gram analysis tools, as program semantics and decision pro-
cedures can be efficiently written in a concise and declarative
manner. At least two major extensions to the standard reso-
lution semantics of Prolog have further enhanced its useful-
ness in this area in recent years: tabled logic programming
and coinductive logic programming—collectively, co-logic
programming.

Tabled logic programming [7, 31] extends Prolog’s stan-
dard inductive semantics with memoization and termination
of cyclically infinite search paths. As a tabled recursive pred-
icate executes, calls and intermediate solutions are automati-
cally stored in a table. If a variant (duplicate) call is encoun-
tered that would normally cause the computation to cycli-
cally diverge, the call is replaced by a previously discovered
solution, if it exists; otherwise, the call is suspended while
other alternatives are tried. Any solutions found by these al-
ternatives are stored in the table and can be substituted for
the suspended calls as well. This substitution process can be
repeated until no new solutions can be found, indicating that
the tabled solutions correspond to the least fixed-point of the
original call. Any suspended calls will fail at this point, as
no new solutions can be found inductively.

Coinductive logic programming [30, 13, 4] allows Prolog
to reason about cyclically infinite data structures and proof
trees. When a recursive call to a coinductive predicate is
made, the call stack is searched for a unifiable ancestor call;
if found, the call is unified with its ancestor and succeeds.
The solution obtained from the unification corresponds to
the greatest fixed-point interpretation of the original call,
meaning a coinductive predicate can generate a proof with-
out encountering—or even specifying—a base case.

Because tabled logic programming and coinductive logic
programming correspond to the least and greatest fixed-point
semantics of proof derivations, respectively, they are useful
for implementing program analyses. In particular, program
loops are by nature cyclic structures for which both induc-
tive and coinductive properties are important for establishing
policy-adherence. While many interesting coinductive prop-
erties can be proved by the absence of an inductive counter-
example, the use of coinductive logic programming allows
constructive proofs of these properties to be computed. Co-
LP, which subsumes both of these strategies, is therefore
particularly well-suited because it allows least and greatest
fixed-point analyses to be combined in a well-defined and
semantically meaningful manner.

Related research on general model-checking is vast, but
there has been less work on applying model-checking to
verifying virtual machine bytecode binaries. Instead, the
majority of model-checking research has focused on de-
tecting deadlock and assertion violation properties of source
code. For example, Java PathFinder (JPF) [20] and Moon-
walker [26] verify properties of Java and .NET source
programs, respectively. Both provide built-in support for

10

deadlock detection and unhandled exceptions, but not LTL
model-checking. Other model-checking research [24, 5] has
targeted abstract languages, such as the π-calculus [21] or
Calculus of Communicating Systems (CCS). While impor-
tant, these systems do not address certain significant practi-
cal issues, such as state space explosion, that typically arise
when model-checking real software systems.

In-lined Reference Monitoring and program rewriting for
security enforcement was first formalized by Erlingsson and
Schneider [11, 27]. Subsequently, a wide variety of IRM im-
plementations have been developed. ConSpec [2] restricts
IRM-injected code to effect-free operations, which allows a
static analysis to verify that a rewritten program does not
violate the intended policy. The Java-MOP system [6] al-
lows policy-writers to use a variety of formal specification
languages, including LTL. Mobile [16] is an In-lined Refer-
ence Monitoring system for the Microsoft .NET framework.
It rewrites .NET CLI programs to satisfy a declarative policy
specification by transforming the program into a well-typed
Mobile program. Finally, SPoX [15] rewrites Java VM byte-
code programs to satisfy declarative, Aspect-Oriented secu-
rity policies.

To our knowledge, ConSpec and Mobile are the only
IRM systems to yet implement automatic certification. The
ConSpec verifier performs a simple static analysis to ver-
ify that pre-specified guard code appears at each security-
relevant code point; the guard code itself is trusted. Mobile
implements a more general certification algorithm by type-
checking the resulting Mobile code. While type-checking
has the advantage of being light-weight, it comes at the ex-
pense of limited computational power. For instance, Mobile
cannot enforce security policies based on data-flow; instead,
it is limited to control-flow based policies. While the secu-
rity policies described by these systems are declarative and
therefore amenable to a more general verifier, both use a ver-
ifier tailored to a specific rewriting strategy.

3. Overview
ActionScript source code is typically compiled to Action-
Script Virtual Machine (AVM) bytecode [1] and subse-
quently interpreted by the AVM. Our verifier models the
AVM in Prolog and extends the semantics of each AVM in-
struction to include security-relevant state. It takes as input a
program in ActionScript ByteCode (ABC) format and a se-
curity policy (expressed in LTL) and conservatively decides
whether every program execution satisfies the policy.

We derive a particularly elegant implementation for our
verifier by observing that an abstract interpreter with coin-
ductive semantics facilitates the realization of a model
checker. That is, where an interpreter loops on non-terminating
programs, a model-checker based on co-LP succeeds (and
terminates) when it revisits an abstract state that constitutes
a valid loop invariant. This reduces much of the machinery

1 event(callpropvoid(open ,[File ,_Mode]),open) :-
2 in_directory(File ,‘~/ secret_files/’).
3 event(callpropvoid(readByte ,_Args),read).
4 event(callpropvoid(readUTF ,_Args),read).
5 event(callpropvoid(writeByte ,_Args),send).
6
7 ltl_policy(g(impl(open ,g(impl(read ,not(f(send))))))).

Figure 1. A policy prohibiting network-sends after file-
reads from a restricted directory.

normally required for model-checking to the relatively sim-
ple framework required for a standard abstract interpreter.

Both tabled and coinductive aspects of co-LP are use-
ful in our approach. Using tabled LP, we implement model-
checking as a search for a counter-example. Tabled LP se-
mantics yield such a counterexample when this search suc-
ceeds. In the case of model-checking, the counter-example
is a policy-violating sequence of AVM instructions that can
be useful to a developer wishing to produce policy-adherent
code. Coinductive LP yields a constructive proof of correct-
ness when the search for a counter-example fails. Such a
proof could be attached to the verified bytecode for use with
a Proof-Carrying Code (PCC) system [22]. While our cur-
rent prototype does not yet produce a complete, machine-
readable proof automatically, most of the machinery neces-
sary for implementing this feature has already been com-
pleted as a natural result of our use of co-LP as the founda-
tion for the verifier. We therefore expect to add this feature
relatively painlessly in future work.

Policies are expressed as LTL formulas encoding the set
of all permissible sequences of security-relevant events. To
reflect the reality that a real process may terminate at any
point (e.g., due to practical issues like hardware failures or
power outages), we model every program state as potentially
terminating. This model limits our system to verifying safety
policies; non-safety LTL properties are conservatively re-
jected. While LTL is therefore a more expressive language
than necessary for our purposes, it is nonetheless convenient
due to its familiarity in the model-checking community and
the existence of many well-developed tools for writing and
reasoning about LTL-specified policies.

As an example, Figure 1 specifies a policy that prohibits
network-send operations after a file in a specific directory
has been opened. This policy often appears in the IRM lit-
erature as a canonical example of a history-based policy
that enforces data confidentiality. The event predicate de-
fines three security-relevant events: open, read, and send.
Method calls to writeByte (regardless of arguments) con-
stitute send events. Method calls to readByte or readUTF
constitute read events, demonstrating that events can ab-
stract across multiple actions. The open event is defined as a
call to the open method, where the first argument (the name
of the file to open) satisfies the predicate in_directory.
Here, the predicate in_directory checks whether the file
name given resides within the prohibited directory.

11

The policy on line 7 encodes the LTL formula G(open→
G(read → ¬Fsend)). Informally, it stipulates that no ex-
ecution may contain the sequence (open . . . read . . . send).
This specification has been simplified for expository pur-
poses, but a discussion of how to elaborate the specification
for a real application is available in [18].

To keep the verifier implementation tractable, we make
several important assumptions about untrusted programs that
simplify the analysis. First, we assume that the compiled
ABC code is syntactically valid. This can be verified sepa-
rately by the AVM bytecode verifier. We also assume that
AVM programs do not perform runtime code generation,
since our analysis is limited to the statically observable code.
Since runtime code generation is only available to ABC pro-
grams via a limited set of system calls, this assumption can
be enforced in policy specifications by prohibiting calls to
those methods.

Our dataflow analysis is conservative in the sense that
it abstracts away certain details of the heap and program
variables. This can cause some policy-adherent code to be
conservatively rejected (though it never results in policy-
violating code being accepted). However, we argue that this
limitation can be overcome by an IRM system that inserts
additional security guards that ease the verification process.
The security guards effectively reduce the state space by ex-
plicitly ruling out unrealizable control flows and their asso-
ciated data flows.

Our early prototype does not yet implement an interpro-
cedural analysis. This limits our current experiments to sim-
ple programs whose security-relevant behavior does not in-
volve method calls. We plan to extend our model-checker
with a suitable analysis in future work.

4. Implementation
There are three major components to our verifier: a parser for
ActionScript ByteCode, an encoding of AVM semantics, and
an LTL model-checker. Each component’s implementation
is described throughout the remainder of the section.

4.1 ABC File Parser
Since typical code consumers do not have access to the orig-
inal ActionScript source code, we verify compiled Action-
Script Bytecode (ABC) files directly. Our ABC parser is a
Definite Clause Grammar (DCG) that transforms a file in
ABC binary format [1] to an annotated abstract syntax tree
(AST). For more information about DCGs and their Prolog
implementations, the reader is invited to consult [29].

4.2 AVM 2 Semantics
The AVM2 semantics module is a declarative implementa-
tion of an ActionScript VM derived from the AVM2 small-
step semantics [1]. Using these semantics, we translate an
ABC program into a transition system for use with the
model-checker. The transition system [3] consists of a set

of states that model the VM state at each point in program
execution, and a transition relation that relates each state to
the states reachable from the current instruction. We encode
the transition relation as a Prolog predicate that is invoked
by the model-checker as it explores the state space.

To avoid state space explosion, we use an abstract inter-
pretation rather than a concrete interpretation. A concrete
data model is inadequate because it requires every possible
AVM memory configuration to be represented by a unique
state in the transition system, and searching the resulting
state space becomes intractable. In contrast, an abstract in-
terpretation allows a collection of possible variable values
to be represented by a single abstract state. The precision
of this abstraction determines the power of our analysis. For
instance, modeling all program values as unknown results
in a simple control-flow analysis. While this would ensure
that every policy-violating program is rejected, it would con-
servatively reject many policy-adherent programs, severely
limiting the usefulness of the verifier. In particular, since
IRMs enforce security policies by tracking security state in
injected program variables, a control-flow analysis cannot
verify that IRM-inserted guards that consult these variables
suffice to prevent policy violations.

To avoid this limitation, we use concrete values where
they can be statically determined and use the abstract state
> otherwise. Our AVM2 semantics are therefore extended
with transitions for >. For instance, the ifeq instruction se-
mantics in Figure 2 model the possibility of executing either
branch when the outcome of the conditional expression can-
not be determined statically; otherwise only the statically in-
ferred branch is interpreted. Note that since model-checking
explores each execution trace independently, the set of stat-
ically inferable values is much larger than would be avail-
able in a more traditional static analysis. The more powerful
data-flow analysis provided by this abstraction captures re-
lationships between data values and event sequences that the
program might exhibit at runtime. As a result, the verifier
can track the values of IRM security state variables.

4.3 Model Checker
The LTL model checker module takes as input a security
policy specified as an LTL formula and the transition sys-
tem supplied by the AVM2 semantics. Recall that LTL ex-
tends propositional logic with temporal operators; the logical
propositions correspond to the individual security-relevant
events, and the temporal operators specify the valid event se-
quences. Given two LTL formulae a and b, the formula Xa
mandates that a holds in the next state, Famandates a holds
in some future state, Ga mandates that a holds globally (i.e.,
in the current and all subsequent states), aUb mandates that
b holds in some future state and a holds in every state until
that point, and aRb mandates that b holds in the current and
all subsequent states until this requirement is released by a
state where a and b both hold.

12

1 % trans /3 encodes the transition relation
2 % EE is the current execution environment : the scope
3 % stack , the operand stack , the register file , and
4 % the current instruction .
5 % NewEE is the resulting execution environment
6 trans(ifeq ,state(H,[EE|EEs]),state(H,[NewEE|EEs])) :-
7 EE =.. [env , SS, [V1 ,V2|Os], RF , Instr],
8 equal(V1, V2 , TruthValue),
9 next_instr(TruthValue ,Instr ,NewInstr),

10 NewEE =.. [env , SS, Os , RF , NewInstr].
11
12 % equal /3 returns true or false if equality between
13 % the arguments can be determined , otherwise top (tt)
14 equal(int(V1), int(V1), bool(true)).
15 equal(int(V1), int(V2), bool(false)) :- V1 =\= V2.
16 equal(V1, V2, tt) :- V1 \= int(_X); V2 \= int(_Y).
17
18 % next_instr /3 gives the next instruction to be
19 % executed , based on the result of the comparison .
20 % If the result is top , both branches are searched.
21 next_instr(bool(true), Instr , NewInstr) :-
22 get_property(Instr , jumplabel , NewInstr).
23 next_instr(bool(false), Instr , NewInstr) :-
24 get_property(Instr , next , NewInstr).
25 next_instr(tt, Instr , NewInstr) :-
26 get_property(Instr , jumplabel , NewInstr).
27 next_instr(tt, Instr , NewInstr) :-
28 get_property(Instr , next , NewInstr).

Figure 2. The ifeq transition relation clause

The expansion rules for the LTL operators [3] provide a
declarative semantics for the interpretation of LTL formulae
by constraining the current state and immediate successor
states. These rules can be encoded directly in Prolog to ob-
tain an interpreter for LTL formulae, as seen in Figure 3. To
check whether a path through the transition system satisfies
a given LTL formula, the model checker recursively invokes
the expansion rules, first checking the requirements placed
on the current state, then making a transition to the next state
on the path and repeating the process.

Using these expansion rules, we can cleanly separate the
temporal operators into two categories: X , F , and U are in-
ductive, as their expansion rules provide base cases for de-
ciding whether a path satisfies the operator, while G and R
are coinductive, as they are satisfied by a cyclically infinite
execution path. Based on this distinction, our implementa-
tion relies on tabling and coinduction to reason about loops
encountered when traversing the transition system—without
these extensions, loops would cause the model checker to
diverge in an attempt to construct the proof for a formula.
Tabling terminates the proof search with a failure if an in-
ductive formula does not hold for a loop, while coinduction
terminates the search with the infinite-length proof when a
coinductive formula holds.

5. Experiments
As a preliminary test of our prototype, we verified three
small test programs against the policy specified in Fig-
ure 1, which disallows network-send operations after a file
has been read from a certain restricted directory. The three
test programs—Unsafe.as, Safe.as, and Loop.as—were
each compiled from ActionScript source code. The first,

1 % verify /2 takes a state and an existentially
2 % quantified LTL formula and checks
3 % whether the formula holds for that state.
4 %
5 % Atomic Propositions are labeled by ‘ap ’.
6 %
7 % holds /2 is true when the atomic proposition holds
8 % in the current state
9 %

10 % ftype /2 is a mapping from top -level temporal
11 % operators to their interpretation semantics
12 %
13 % The clause for ‘a and b’ should ensure that ‘a’ and
14 % ‘b’ hold on the same execution path. For simplicity
15 % of presentation , we omit this check here.
16
17 verify(State , F) :- ftype(F, inductive),
18 verify_inductive(State , F).
19 verify(State , F) :- ftype(F, coinductive),
20 verify_coinductive(State , F).
21
22 :- tabled verify_inductive /2.
23 verify_inductive(S, ap(AP)) :- holds(S,AP). % p
24 % Logical operators
25 verify_inductive(S, not(ap(AP))) :- % not(p)
26 \+ holds(S, AP).
27 verify_inductive(S, or(A,B)) :- % a or b
28 verify(S, A) ; verify(S, B).
29 verify_inductive(S, and(A,B)) :- % a and b
30 verify(S, A), verify(S, B).
31 % Inductive temporal operators
32 verify_inductive(S, x(A)) :- % X(a)
33 trans(S, S1), verify(S1, A).
34 verify_inductive(S, f(A)) :- % F(a)
35 verify(S, A); verify(S, x(f(A))).
36 verify_inductive(S, u(A,B)) :- % a U b
37 verify(S, B);
38 verify_inductive(S, and(A, x(u(A,B)))).
39
40 :- coinductive verify_coinductive /2.
41 % Coinductive temporal operators
42 verify_coinductive(S, g(A)) :- % G(a)
43 verify(S, and(A, x(g(A))).
44 verify_coinductive(S, r(A,B)) :- % a R b
45 verify(S, and(A,B)).
46 % {a and b both occur , releasing b}
47 verify_coinductive(S, r(A,B)) :-
48 verify(S, and(B, x(r(A,B)))).
49 % {a does not hold , so b is not released}

Figure 3. A simple Co-LP LTL model checker

Unsafe.as, exhibits policy-violating behavior when exe-
cuted. The second, Safe.as, was obtained by instrumenting
Unsafe.as with runtime security guards similar to those
that an IRM system would typically insert as part of the
binary-rewriting process. This involved adding an additional
program variable that tracks the current security state at run-
time, along with instructions that test and update the vari-
able as security-relevant events occur. The third program,
Loop.as, enclosed the security-relevant operations of the
second program in an infinite loop, allowing us to test our
loop analysis. The source code of all three programs can
be seen in Figure 4. Code inserted to generate Safe.as
is marked in the listing with *, and the additional code in
Loop.as is marked with #.

In this program the value of flag cannot be inferred
statically, so our analysis conservatively assumes that it can
take on any integer value. Thus, the outcome of the test
(flag > 0) in line 12 is not statically known, leading to

13

1 public function Test(flag:int) {
2 var socket:Socket = new Socket ();
3 var file:File = new File("secret.txt");
4 var fileStream:FileStream = new FileStream ();
5 * var security:int = 0;
6
7 fileStream.open(file , FileMode.READ);
8
9 socket.connect("example.com", 1234);

10
11 # while (true) {
12 if (flag > 0) {
13 fileStream.readByte ();
14 * security = 1;
15 }
16
17 * if (security != 1) {
18 socket.writeByte (0);
19 * }
20 # }
21
22 socket.close();
23 fileStream.close ();
24 }

Figure 4. Source code of the test programs

a possible policy violation at the network-send operation in
line 18 if no runtime security guards were present. Lines 14
and 17, however, update and test (respectively) a new pro-
gram variable security that tracks the current security
state. In this case the state is 1 if a file has previously been
read and 0 otherwise. Thus, testing (security != 1) in
line 17 before each network-send event suffices to prevent a
policy violation.

We ran each of these tests 10 times on an Intel Pentium
Core 2 Duo machine with 4GB of RAM running Ubuntu
Intrepid and Yap Prolog v5.1.4 [32]. The median runtimes
are reported below. Unsafe.as was correctly identified as
policy-violating, while Safe.as and Loop.as were cor-
rectly identified as policy-adherent.

Unsafe.as 0.093s
Safe.as 0.110s
Loop.as 0.101s

6. Conclusion and Future Work
We have described preliminary work toward developing a se-
curity policy verifier for Adobe ActionScript bytecode pro-
grams. Our verifier consists of an interpreter for Action-
Script bytecode and an LTL model-checker, both written in
Prolog extended with tabling and coinduction. Experiments
demonstrated that our prototype can efficiently verify simple
but interesting history-based policies for small ActionScript
programs.

Verifiers are typically part of a secure system’s trusted
computing base. It is therefore important that the verifier it-
self be amenable to formal verification. The declarative na-
ture of co-LP Prolog yields several significant advantages in
this regard. First, our verifier code base is very concise—
the parser is 2 kSLOC while the AVM2 semantics and the
model-checker are each 1 kSLOC. Second, our experiences
indicate that it is straightforward to encode semantic rules,

such as those from the AVM2 Specification [1], as a relation
between program states (see Figure 2). Finally, implement-
ing the expansion rules for LTL in co-LP avoids a great deal
of tedious and error-prone implementation work by relying
upon the well-defined termination semantics of tabling and
coinduction in Prolog (see Figure 3).

Like all static analysis techniques, our verifier conserva-
tively rejects some policy-adherent programs. Our ongoing
work is presently focusing on extending our analysis to re-
duce this conservative rejection rate. This involves introduc-
ing richer abstractions to model data dependencies and data
flows. We intend to use constraint logic programming to el-
egantly implement these abstractions while minimizing the
state space that must be explored to verify useful security
properties.

Additionally, we will provide a means by which a code
producer or enforcement mechanism can supply hints to the
verifier. These hints will greatly increase the efficiency of the
verifier by pre-computing the set of possible variable values
at particular points in the program. These precomputed val-
ues need not be trusted since the verifier can ignore hints
that are inconsistent with its analysis. This capability will be
implemented in conjunction with our IRM system currently
under development.

We also plan to generate explicit policy-adherence proofs.
This involves enhancing current implementations of coin-
ductive Prolog [13] to support enumeration of all coinductive
proofs of a goal. After completing these efforts, generating
these proofs should require minimal changes to our system.

Future work also should investigate applying our tech-
nique to other bytecode languages such as Java and .NET,
and the IRM systems that have been implemented for them.
We expect that the modular design of our framework will
simplify the task of extending our implementation to cover
these domains.

There is a large body of existing work on optimizing LTL
formulae used in model checking (e.g., [8, 12, 28]). We also
intend to explore the use of other temporal logics, especially
Computation Tree Logic (CTL) and the µ-calculus [19], for
the specification of security policies. The method mentioned
in [10] suggests a means of modularizing the temporal logic
engine out of the model-checker, allowing the same model-
checking system to be used for multiple temporal logics by
changing which temporal logic engine is used. Examining
how to use several of these engines at once seems a promis-
ing direction for our tool as well. These techniques are ex-
plored further in [9].

Finally, we plan to study some of the many existing ex-
amples of malicious ActionScript code toward deriving prac-
tically useful policies and analysis strategies that enforce
them. This should lead to more robust certification of mo-
bile ActionScript code in practical settings.

14

References
[1] Actionscript virtual machine 2 overview, 2007.

http://www.adobe.com/devnet/actionscript/

articles/avm2overview.pdf.

[2] I. Aktug and K. Naliuka. ConSpec - A Formal Language for
Policy Specification. Science of Computer Prog., 74:2–12,
2008.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[4] A. Bansal. Next Generation Logic Programming Systems.
PhD thesis, The University of Texas at Dallas, Dallas, Texas,
2007.

[5] S. Basu and S. A. Smolka. Model checking the Java metalock-
ing algorithm. ACM Trans. Softw. Eng. Methodol., 16(3):12,
2007.

[6] F. Chen. Java-MOP: A monitoring oriented programming en-
vironment for Java. In In Proc. of the Eleventh International
Conf. on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS), pages 546–550. Springer, 2005.

[7] W. Chen and D. S. Warren. Tabled Evaluation with Delaying
for General Logic Programs. Journal of the ACM, 43:43–1,
1996.

[8] N. Daniele, F. Guinchiglia, and M. Y. Vardi. Improved au-
tomata generation for linear temporal logic. In Computer
Aided Verification, Proc. 11th International Conf., volume
1633 of LNCS, pages 249–260. Springer-Verlag, 1999.

[9] B. W. DeVries. Developing an optimized LTL model checker
in coinductive prolog, forthcoming. Master’s thesis, Univer-
sity of Texas at Dallas, June 2009.

[10] L. K. Dillon and Y. S. Ramakrishna. Generating oracles from
your favorite temporal logic specifications. SIGSOFT Softw.
Eng. Notes, 21(6):106–117, 1996.

[11] U. Erlingsson and F. B. Schneider. SASI Enforcement of Se-
curity Policies: A Retrospective. In Proc. of the New Security
Paradigms Workshop, 1999.

[12] K. Etessami and G. J. Holzmann. Optimizing büchi automata.
In CONCUR ’00: Proc. of the 11th International Conf. on
Concurrency Theory, pages 153–167. Springer, 2000.

[13] G. Gupta, A. Bansal, R. Min, L. Simon, and A. Mallya. Coin-
ductive Logic Programming and Its Applications. In Proc. of
the International Conf. on Logic Prog., 2007.

[14] K. W. Hamlen. Security Policy Enforcement by Automated
Program-rewriting. PhD thesis, Cornell University, Ithaca,
New York, 2006.

[15] K. W. Hamlen and M. Jones. Aspect-Oriented In-lined Refer-
ence Monitors. In Proc. of the ACM SIGPLAN Workshop on
Prog. Languages and Analysis for Security (PLAS), 2008.

[16] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Certified
In-Lined Reference Monitoring on .NET. In Proc. of the
ACM SIGPLAN Workshop on Prog. Languages and Analysis
for Security (PLAS), 2006.

[17] K. W. Hamlen, G. Morrisett, and F. B. Schneider. Computabil-
ity Classes for Enforcement Mechanisms. In ACM Trans. on
Prog. Languages and Systems, 2006.

[18] M. Jones and K. Hamlen. Enforcing IRM security policies:
Two case studies. In Proc. of IEEE Intelligence and Security
Informatics (ISI) Conference (to appear), June 2009.

[19] E. M. C. Jr., O. Grumberg, and D. A. Peled. Model Checking.
The MIT Press, Cambridge, Massachusetts, 1999.

[20] W. Kisser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
Checking Programs. Automated Software Engineering Jour-
nal, 10(2), April 2003.

[21] R. Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, June 1999.

[22] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. In X. Useni, editor, 2nd Symposium on
Operating Systems Design and Implementation (OSDI ’96),
October 28–31, 1996. Seattle, WA, pages 229–243. USENIX,
1996.

[23] A. Pnueli. The temporal logic of programs. In Proc. of the
18th Annual Symposium on Foundations of Computer Science
(FOCS’77), pages 46–57. IEEE Comp. Soc. Press, Oct.-Nov.
1977.

[24] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan,
S. A. Smolka, T. Swift, and D. S. Warren. Efficient Model
Checking Using Tabled Resolution. In Computer Aided Veri-
fication (CAV ’97). Springer-Verlag, 1997.

[25] K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking. In
In 14th International SPIN Workshop, volume 4595 of LNCS,
pages 149–167. Springer, 2007.

[26] T. C. Ruys and N. H. M. A. de Brugh. MMC: the Mono Model
Checker. Electron. Notes Theor. Comput. Sci., 190(1):149–
160, 2007.

[27] F. B. Schneider. Enforceable Security Policies. ACM Trans.
on Information and System Security, 3:30–50, 2000.

[28] R. Sebastiani, R. Sebastiani, S. Tonetta, and S. Tonetta. More
deterministic vs. smaller bchi automata for efficient LTL
model checking. In In CHARME03, volume 2860 of LNCS,
pages 126–140. Springer, 2003.

[29] L. . Shapiro and E. Y. Sterling. The Art of PROLOG: Ad-
vanced Programming Techniques. The MIT Press, 1994.

[30] L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive
Logic Programming. In Proc. of the International Conf. on
Logic Prog., 2006.

[31] H. Tamaki and T. Sato. OLD resolution with tabulation. In
E. Y. Shapiro, editor, ICLP, volume 225 of LNCS, pages 84–
98. Springer, 1986.

[32] Yap prolog, 2009. http://www.dcc.fc.up.pt/~vsc/

Yap/.

15

