
Static analysis for efficient hybrid information-flow control

Scott Moore
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA, USA

sdmoore@fas.harvard.edu

Stephen Chong
School of Engineering and Applied Sciences

Harvard University
Cambridge, MA, USA

chong@seas.harvard.edu

Abstract—Hybrid information-flow monitors use a combi-
nation of static analysis and dynamic mechanisms to provide
precise strong information security guarantees. However, unlike
purely static mechanisms for information security, hybrid
information-flow monitors incur run-time overhead. We show
how static analyses can be used to make hybrid information-
flow monitors more efficient, in two ways.

First, a simple static analysis can determine when it is
sound for a monitor to stop tracking the security level of
certain variables. This potentially reduces run-time overhead
of the monitor, particularly in applications where sensitive (i.e.,
confidential or untrusted) data is infrequently introduced to the
system.

Second, we derive sufficient conditions for soundly incorpo-
rating a wide range of memory abstractions into information-
flow monitors. This allows the selection of a memory ab-
straction that gives an appropriate tradeoff between efficiency
and precision. It also facilitates the development of innovative
and sound memory abstractions that use run-time security
information maintained by the monitor.

We present and prove our results by extending the
information-flow monitor of Russo and Sabelfeld (2010). These
results bring us closer to efficient, sound, and precise enforce-
ment of information security.

Keywords-information-flow control; hybrid information-flow
monitors; dynamic information-flow monitors.

I. INTRODUCTION

Tracking and controlling the flow of information in
computer systems can be used to enforce strong, precise,
application-specific information security [1]. Information-
flow control can be achieved through static or dynamic
mechanisms. Static mechanisms (exemplified by security
type systems, e.g., [2, 3, 4]) analyze a program before
execution to determine whether all possible executions are
secure. Dynamic mechanisms (e.g., [5, 6, 7]) monitor or
instrument program execution to determine whether a par-
ticular execution is secure. Dynamic mechanisms can thus be
more precise (since they accept or reject a single program
execution, instead of an entire program), but unlike static
mechanisms, they incur runtime overhead.

Recent work considers hybrid information-flow control
[8, 9, 10, 11], which combines both static and dynamic
mechanisms to enforce information-flow security guarantees.
Static mechanisms can reason more precisely than purely

dynamic mechanisms about certain kinds of information
flows, a result recently proved by Russo and Sabelfeld [11].
Hybrid mechanisms can accept or reject a single program
execution, but also reason precisely about information flow.

In this work, we show how static analysis can be used
to make hybrid information-flow monitors more efficient in
two ways. First, we show that a straight-forward security-
type system can reduce runtime overhead of information-
flow monitors by determining when it is sound for a monitor
to stop tracking certain variables. Second, we derive suffi-
cient conditions for soundly incorporating a wide range of
memory abstractions into information-flow monitors. This
allows the selection of a memory abstraction that gives an
appropriate tradeoff between efficiency and precision. We
present and prove these results by extending the fail-stop
information-flow monitor of Russo and Sabelfeld [11].

1 if (username = “guest”) {
2 d := (untrusted)request.data; // untrusted data
3 untrustedLog := concat(untrustedLog, d)
4 } else {
5 d := request.data; // trusted data
6 }
7 . . .
8 if (action = “update”) {
9 updateDB(d); // dangerous operation
10 } else {
11 . . . // no dangerous operations
12 }
13 . . . // no dangerous operations

Figure 1. Example of inefficient information-flow monitoring

Selective tracking. Consider the pseudo-code in Figure 1,
which models the processing of a web application request.
Depending on whether the current user is a guest or an
authenticated user, data from the request is regarded as either
untrusted or trusted. If the data is untrusted, it is appended
to an audit log. After some computation, the data may be
used in a database update, which is a dangerous operation
that should depend only on trusted data.

Suppose the program executes with a monitor that tracks
the flow of information in the program in order to prevent
security violations, such as a database update depending on

Appeared in CSF 2011 1

untrusted data. There are at least three ways in which this
information-flow monitor may waste effort at runtime.

First, information in variable untrustedLog never affects
whether a security violation occurs, even though it stores
untrusted data. Thus, a monitor that does not track variable
untrustedLog will still correctly prevent security violations,
and so effort spent tracking this variable is wasted. Second,
variable d contains untrusted information only on some
executions. Depending on the usage of the web application,
it may contain trusted data on the majority of executions. In
such cases there is no need for the monitor to track variable
d. Third, even on executions in which d contains untrusted
information, if control reaches line 11 or line 13, then the
contents of d can never affect whether a security violation
occurs, so there is no need to track it anymore.

There are several opportunities for reducing the number
of variables tracked by the monitor, which will, for many
monitors, reduce runtime overhead. Even more opportunities
exist for a monitor that can dynamically start and stop
tracking variables. (We are developing an inlined monitor
that dynamically generates instrumented code to track a
subset of program variables, and can thus dynamically start
and stop tracking variables.)

We present a static analysis that can determine when a
program variable is no longer a security concern and show
how this analysis can be incorporated into an information-
flow monitor. The modified monitor provides exactly the
same security guarantee, but with potentially reduced run-
time overhead. For the example program above, the analysis
enables the monitor to never track variable untrustedLog and
to stop tracking variable d when line 11 or 13 is reached.
The analysis can either be performed prior to execution or
on-the-fly, allowing its use with dynamic languages [12].

1 // Create new locations, with empty strings as initial values
2 secretLog := new(“ ”);
3 normalLog := new(“ ”);
4 . . .
5 if (isSecretAgent(username)) { // Sensitive information
6 pLog := secretLog;
7 } else {
8 pLog := normalLog;
9 }
10 . . .
11 ∗pLog := concat(∗pLog, “logged in”);

Figure 2. Example of information flow through pointer value

Memory abstractions. Practical information-flow control
must deal with realistic language features, including dynam-
ically allocated memory and first-class memory references.
Consider the program fragment in Figure 2, which models
a web application in which some users are secret agents. If
the current user is a secret agent then events are logged in
special log to avoid revealing secret activities. Variable pLog

points to either secretLog or normalLog and indicates which
log will be updated. It is set based on secret information.
At line 11, an entry is added to the log. Suppose the current
user is a secret agent. Then the location normalLog will not
be updated. However, an observer of normalLog may notice
that the log is unchanged, and thus learn that the current user
is a secret agent. This information flow occurs because the
pointer pLog depends on secret information, and updating
through this pointer means that learning the value of any
location that pLog might have pointed to may now reveal
secret information.

Monitors can soundly track the flow of information in
memory, including the heap, using appropriate memory ab-
stractions. The choice of memory abstraction can affect the
precision and efficiency of the resulting monitor. In general,
fine-grained abstractions may enforce security guarantees
precisely, but require an expensive analysis and higher
monitor overhead (due to the need to track more abstract
locations). Coarser abstractions may be more efficient, but
insufficiently precise. In order to explore these tradeoffs,
we must first understand the requirements for soundly in-
corporating a memory abstraction into an information-flow
monitor. In addition, we would like to consider to what
extent information about the current execution can be used
to increase the precision of a memory abstraction.

We present sufficient conditions for incorporating memory
abstractions and analyses into a hybrid information-flow
monitor. The key insight is that the behavior of the monitor
must not leak information, meaning that we must be able
to reason statically and precisely about the behavior of
the monitor in other possible executions of the program.
This has the effect of restricting the precision of memory
abstractions. However, the conditions are sufficiently lenient
to allow many different memory abstractions to be soundly
incorporated into information-flow monitors, such as points-
to sets (e.g., [13, 14, 15, 16]), shape graphs (e.g., [17]),
and regions (e.g., [18, 19]). The conditions also allow the
monitor to use information from the current execution of a
program.

The rest of the paper is organized as follows. We present
background information in Section II, including Russo and
Sabelfeld’s fail-stop hybrid information-flow monitor [11].
In Section III we show how an information-flow monitor
can soundly stop tracking variables when they are no longer
a security concern. In Section IV we show how a wide
variety of memory abstractions and analyses can be soundly
incorporated into information-flow monitors. We discuss
related work in Section V and conclude in Section VI.

II. BACKGROUND: INFORMATION-FLOW MONITOR

In this section, we present a simple imperative language
and a hybrid information-flow monitor for the language,
based closely on that of Russo and Sabelfeld [11]. We

2

generalize their language and monitor to an arbitrary security
lattice (instead of the two-point lattice they use) and modify
the language and monitor slightly to facilitate extensions
described in later sections. The modified monitor satisfies
the same termination-insensitive noninterference condition
as the original monitor, modulo generalization to an arbitrary
security lattice. We state the generalized security condition
and prove the modified monitor satisfies it.

A. Language

Values v ::= n
Expressions e ::= v | x | e1 ⊕ e2
Commands c ::= skip | x := e | c1; c2 | output`(e) |

if e then c1 else c2 | while e do c
Terms t ::= c | end | stop | t1; t2

Figure 3. Simple imperative language

The syntax for a simple imperative language with an
explicit output command is given in Figure 3. Values are
restricted to integers n, and expressions e are either values
v, variables x, or binary expressions e1⊕e2, where ⊕ ranges
over total binary operations over integers.

We assume a complete lattice L of security levels and use
t and v respectively to denote the join operator and partial
order. We write >L and ⊥L to denote the top and bottom
elements of L, respectively. Security levels may represent
confidentiality levels, integrity levels, or both. Security levels
mandate restrictions on the use of data. Intuitively, levels
higher in the lattice mandate more restrictions. For confiden-
tiality, higher in the lattice corresponds to more confidential;
for integrity, higher means less trusted. We use the term
“sensitive information” to refer to information labeled with
a high security level: either confidential information or
untrusted information.

Commands c are standard, with the exception of the
output`(e) command, which outputs the value of expression
e to channel `, where ` is a security level and is intended
to be an upper bound on information that may be learned
by observing the channel. We assume, without loss of
generality, that there is exactly one channel per security
level.

Execution of commands introduces new syntactic forms.
Terms t represent commands in the process of execution, and
extend commands with sequences of terms, stop, and end.
Term stop represents a command that has finished execution,
and term end indicates that execution is leaving the scope of
a branch. The operational semantics inserts end terms when
any branch is encountered.

A program configuration is a pair 〈t,m〉, where t is a
term and memory m is a mapping from variables to values.
The judgment e,m ⇓ v indicates that expression e evaluates
to value v under memory m. We write m[x 7→ v] for the
memory that maps x to v, and otherwise behaves the same
as m.

The judgment 〈t,m〉 α−→ 〈t′,m′〉 indicates that configura-
tion 〈t,m〉 can take a single step to configuration 〈t′,m′〉. As
part of that step, internal event α is emitted; the monitor uses
internal events to track and control execution. We describe
the different internal events in the following subsection.
Inference rules for the operational semantics are given in
Figure 4.

B. Hybrid information-flow monitor

An information-flow monitor tracks and controls the flow
of information in a program. A monitor configuration is a
pair 〈γ, σ〉 consisting of monitor environment γ and monitor
stack σ. Monitor environment γ maps program variables
to security levels, tracking the security level of information
currently stored in each variable. We write lev(e, γ) for the
join of levels γ(x) for all variables x ∈ dom(γ) ∩ vars(e),
where vars(e) is the set of all variables that occur in e.
Function lev(e, γ) gives an upper bound on the information
that may be learned by evaluating expression e, assuming
that γ describes upper bounds of information stored in
variables.

Monitor stack σ is used to track the security level of the
program counter, and to account for implicit flows [20] (in-
formation flows due to the control structure of the program).
It is a stack of pairs (`, γ′) where ` is a security level and
γ′ is a monitor environment. A pair is pushed on the stack
when the program branches and is popped off the stack at
the end of the branch. An upper bound on the security level
of information influencing control flow can be obtained by
taking the join of the first element of all pairs in the stack,
denoted lev(σ). We refer to this upper bound as the program
counter level. We describe the use of the monitor stack in
more detail below.

A monitored program configuration is a pair of a pro-
gram configuration and a monitor configuration. Monitored
execution of a program requires that both the program
configuration and the monitor configuration can take a step.
Figure 5 shows the inference rule for monitored execution.
Note that the monitored execution rule is parameterized
by monitor M. This allows us to discuss the behaviors
of different monitors. We use MRS to denote Russo and
Sabelfeld’s fail-stop monitor [11].

〈t,m〉 α−→ 〈t′,m′〉 〈γ, σ〉 α,t′,m−−−−→
M β

〈γ′, σ′〉

〈〈t,m〉, 〈γ, σ〉〉 β−→
M
〈〈t′,m′〉, 〈γ′, σ′〉〉

Figure 5. Semantics of monitored executions

A monitor configuration takes a step based on the internal
event generated by the executing program and may produce
an output. The small step judgment for monitor configura-

tions is written 〈γ, σ〉 α,t′,m′

−−−−→
M β

〈γ′, σ〉, where M indicates

which monitor is in use, α is the triggering internal event,

3

m(x) = v

x,m ⇓ v v,m ⇓ v
e1,m ⇓ v1 e2,m ⇓ v2 v1 ⊕ v2 = v

e1 ⊕ e2,m ⇓ v 〈skip,m〉 skip−−→ 〈stop,m〉

e,m ⇓ v

〈x := e,m〉 assign(x,e)−−−−−−−→ 〈stop,m[x 7→ v]〉

〈t1,m〉
α−→ 〈stop,m′〉

〈t1; t2,m〉
α−→ 〈t2,m′〉

〈t1,m〉
α−→ 〈t′1,m′〉 t′1 6= stop

〈t1; t2,m〉
α−→ 〈t′1; t2,m

′〉

e,m ⇓ v v 6= 0

〈if e then c1 else c2,m〉
branch(e,c2)−−−−−−−−→ 〈c1; end,m〉

e,m ⇓ 0

〈if e then c1 else c2,m〉
branch(e,c1)−−−−−−−−→ 〈c2; end,m〉

〈end,m〉 join−−→ 〈stop,m〉

e,m ⇓ v v 6= 0

〈while e do c,m〉 branch(e,skip)−−−−−−−−−→ 〈c; end;while e do c,m〉

e,m ⇓ 0

〈while e do c,m〉 branch(e,c)−−−−−−−→ 〈end,m〉

e,m ⇓ v

〈output`(e),m〉
output`(e,v)−−−−−−−−→ 〈stop,m〉

Figure 4. Language semantics

and β is the resulting output, which is either nothing or
o`(v), indicating output of value v on channel `. The monitor
can thus halt the execution of the program or modify output
in order to enforce security. The small step judgment for
monitor configurations also takes the new term t′ and the
original memory m; this information is not used by Russo
and Sabelfeld’s monitor but is used by our extensions.

ASSIGN

lev(e, γ) t lev(σ) = `

〈γ, σ〉 assign(x,e),t′,m′

−−−−−−−−−−→
MRS

〈γ[x 7→ `], σ〉

BRANCH

lev(e, γ) t lev(σ) = `

〈γ, σ〉 branch(e,c),t′,m′

−−−−−−−−−−−→
MRS

〈γ, (`,UPDATE`(c)) : σ〉

JOIN

〈γ, (`, γ′) : σ〉 join,t′,m′

−−−−−−→
MRS

〈γ t γ′, σ〉

OUTPUT

lev(σ) t lev(e, γ) v `

〈γ, σ〉 output`(e,v),t
′,m′

−−−−−−−−−−−→
MRS o`(v)

〈γ, σ〉

SKIP

〈γ, σ〉 skip,t′,m′

−−−−−−→
MRS

〈γ, σ〉

Figure 6. Flow-sensitive monitor, MRS

Small step semantics for MRS are given in Figure 6. Event
skip, generated when the program executes a skip command,

is always accepted by the monitor and does not change the
monitor configuration. Event assign(x, e) is generated by
execution of command x := e. The monitor updates the
security level of x to the join of the expression’s security
level lev(e, γ) with the program counter level lev(σ).

When the program enters a branch (either an if or while
command), an internal event branch(e, c) is generated,
where expression e is the branch test, and command c is the
branch not taken. This causes the monitor to push a new pair
(`, γ′) onto the monitor stack, where ` is the join of security
level of expression e with the current program counter
level lev(σ), and γ′ is the result of calling UPDATE`(c).
The function UPDATE`(c) analyses command c and returns
a monitor environment γ′ such that for every variable x,
γ′(x) ∈ {`,⊥L}, and if c contains an assignment to x then
γ′(x) = `, otherwise γ′(x) = ⊥L.

When the end of a branch is reached, internal event
join is generated, which causes the top element (`′, γ′) of
the monitor stack to be popped, and the current monitor
environment γ changed to γ t γ′ (i.e., the point-wise join
of γ and γ′). This allows the monitor to track information
flows that occur due to code in the branch not taken that
could have executed.

Internal event output`(e, v) is generated when the pro-
gram attempts to output expression e on channel `. The
monitor allows the output only if the information that may
be learned by the evaluation of the expression (i.e., lev(e, γ))
and the information that has influenced the decision to
perform the output (i.e., program counter level lev(σ)) are
bounded above by `, the information allowed to be output
on the channel. In this paper, we consider only Russo and
Sabelfeld’s fail-stop monitor; they also explore monitors that
behave differently on output events. Our results apply to
those other monitor behaviors.

4

C. Security

Russo and Sabelfeld’s fail-stop monitor satisfies a termi-
nation-insensitive noninterference security condition. Here
we state the noninterference condition, extended in a
straightforward way to an arbitrary lattice of security levels,
and prove the generalized monitor satisfies the condition.

We write

〈〈t,m〉, 〈γ, σ〉〉
~β−→
M

∗ 〈〈t′,m′〉, 〈γ′, σ′〉〉

when monitored program configuration 〈〈t,m〉, 〈γ, σ〉〉
may take zero or more steps to reach configuration
〈〈t′,m′〉, 〈γ′, σ′〉〉, producing the sequence of outputs ~β. We
write `(~β) for the subsequence of ~β containing all and only
events output to channels `′ such that `′ v `. Intuitively, `(~β)
is the output that is observable during program execution on
channels at level ` or lower.

Given monitor environment γ, we say that two memories
m1 and m2 are `-equivalent, written m1 =`

γ m2, if they
agree on the values of all variables x such that γ(x) v `:
∀x. γ(x) v `⇒ m1(x) = m2(x).

Informally, a monitor is secure if for every command
c and security level `, given two memories that are `-
equivalent, the monitored execution of c from these two
memories will produce outputs that look the same to an
entity that can observe all channels at level ` or lower.
Given output sequence ~β1, output sequence ~β2 looks the
same if either `(~β1) = `(~β2), or `(~β2) is a prefix of `(~β1)
and no additional observable events will be generated by
the execution that produced `(~β2). More precisely, we write
〈〈t,m〉, 〈γ, σ〉〉 ⇒6v` if for all monitored executions starting
from configuration 〈〈t,m〉, 〈γ, σ〉〉, there are no outputs to
a channel at level ` or lower.

Definition 1 (Security). Given monitor M and security
lattice L, M is secure if for all commands c, all ` ∈ L,
all memories m1 and m2, and monitor environments γ such
that m1 =`

γ m2, if

〈〈c,m1〉, 〈γ, σ〉〉
~β1−→
M

∗ 〈〈t′1,m′1〉, 〈γ′1, σ′1〉〉,

then there exist t′2,m
′
2, γ
′
2, and σ′2 such that

〈〈c,m2〉, 〈γ, σ〉〉
~β2−→
M

∗ 〈〈t′2,m′2〉, 〈γ′2, σ′2〉〉

where the following conditions hold.
1) |`(~β2)| ≤ |`(~β1)|
2) if |`(~β2)| = |`(~β1)|, then `(~β1) = `(~β2)
3) if |`(~β2)| < |`(~β1)|, then `(~β2) is a prefix of `(~β1) and
〈〈t′2,m′2〉, 〈γ′2, σ′2〉〉 ⇒6v`.

Theorem 1. Monitor MRS is secure.

Due to our extension from a two-point lattice to an arbi-
trary lattice L, the proof of Theorem 1 given by Russo and
Sabelfeld [11] does not apply. However, the theorem holds
as an immediate consequence of Theorem 3 in Section IV,

which proves security for a language that is a superset of
the language described here.

III. SELECTIVE TRACKING

Monitored execution can be significantly slower than
normal execution of a program. For example, Chandra
and Franz [10] report that with their hybrid information-
flow monitor, assignments are 3× slower than unmonitored
execution, despite using a restricted set of security levels
with an efficient representation. Newsome and Song [21] in-
strument binaries with information-flow tracking and report
CPU-bound computation taking more than 10× longer than
executing the binary in the same instrumentation framework
with no tracking. Much of the runtime overhead of an
information-flow monitor results from tracking the security
levels of many variables.

If at some point in the program’s execution, the contents
of a specific variable can no longer influence the occurrence
of a security violation, there is no need to track its security
level. By not tracking a variable, the monitor can reduce the
overhead associated both with storage for that variable and
with performing join operations on its security level. This
reduction may be significant for applications where sensitive
data is rarely introduced to the system, or where operations
that may violate security are rare.

We present a static analysis that soundly determines
when a variable can no longer influence the occurrence
of a security violation and show that the analysis can be
incorporated into an information-flow monitor with no loss
of security. We also discuss implementation issues.

A. Static analysis

We use a simple flow-sensitive security type system [22]
to determine when a variable cannot cause a security viola-
tion. We use a special two-point lattice, containing elements
⊥ and >, where ⊥ v > and > 6v ⊥. A typing environment Γ
maps each variable to either ⊥ or >. Intuitively, if Γ(x) = >
then the value stored in variable x may have been influenced
by a variable we are considering no longer tracking.

The judgment Γ ` e : τ means that under typing
environment Γ, information associated with expression e is
at most τ . If τ = >, then the evaluation of the expression
may depend on a variable we are considering no longer
tracking; if τ = ⊥, then evaluation is independent of such
variables.

The judgment pc ` Γ {t′}Γ′ means that if Γ is an accurate
description of the information stored in variables before t′

executes, and if pc ∈ {⊥,>} indicates whether the decision
to execute t′ depends on variables we are considering
no longer tracking, then Γ′ will accurately describe the
information stored in variables after t′ executes.

Inference rules for both judgments are given in Figure 7.
We extend v pointwise for environments and write Γ v Γ′

to denote ∀x. Γ(x) v Γ′(x). We write Γ[x 7→ τ] for

5

τ =
⊔
x∈vars(e) Γ(x)

Γ ` e : τ

Γ ` e : τ

pc ` Γ {x := e}Γ[x 7→ pc t τ]

Γ ` e : ⊥
⊥ ` Γ {output`(e)}Γ

pc ` Γ {t1}Γ′ pc ` Γ′ {t2}Γ′′

pc ` Γ {t1; t2}Γ′′

Γ ` e : τ pc t τ ` Γ {ci}Γi Γi v Γ′ i = 1, 2

pc ` Γ {if e then c1 else c2}Γ′

Γ v Γ′ Γ′ ` e : τ pc t τ ` Γ′ {c}Γ′′ Γ′′ v Γ′

pc ` Γ {while e do c}Γ′

pc ` Γ {skip}Γ pc ` Γ {stop}Γ pc ` Γ {end}Γ

Figure 7. Flow-sensitive information-flow type system

X ⊆ dom(γ′)

〈γ, σ〉 α,t′,m−−−−→
MRS β

〈γ′, σ′〉 ⊥ ` ⊥[X 7→ >] {t′}Γ

〈γ, σ〉 α,t′,m−−−−→
MPERF β

〈γ′ \X,σ′〉

Figure 8. Monitor using static analysis to increase performance, MPERF

the typing environment that maps x to τ and otherwise
behaves like Γ. More generally, we write Γ[X 7→ τ] for the
environment that maps all variables in the set X to τ and
otherwise behaves like Γ. Finally, we write ⊥ for the typing
environment that maps every variable to ⊥.

The inference rules are standard for a flow-sensitive secu-
rity type system, with the exception of the rule for command
output`(e). An output command is the only command that
may cause a security violation. As such, the typing rule
requires that both the value output and the decision to
output are independent of any variables we are considering
no longer tracking: both must have level ⊥. Note that the
security level ` of the output command is irrelevant: the
type system is simply being used to determine whether any
output command may be influenced by a variable we are
considering no longer tracking.

Intuitively, if the judgment ⊥ ` ⊥[x 7→ >] {t′}Γ holds
for some Γ, then the value of variable x just before term t′

executes does not influence any output that execution of t′

may produce: it cannot affect either the decision to output or
the value output. Thus, if t′ is all that remains of the program
to execute, then there is no need to track the security level
of variable x in the rest of the program. More generally, if
⊥ ` ⊥[X 7→ >] {t′}Γ holds, then none of the variables in
the set X can cause a security violation, and there is no
need to track the security level of any of them.

B. Monitor MPERF

We define a new monitor, MPERF, that uses this static
analysis to reduce the number of variables that the monitor
must track. Monitor MPERF has a single inference rule, given

in Figure 8. We write γ \ X for the monitor environment
that is undefined for variables X and otherwise behaves like
monitor environment γ. Thus, dom(γ \X) = dom(γ) \X .

Intuitively, MPERF takes a step 〈γ, σ〉 α,t′,m−−−−→
MPERF β

〈γ′ \X,σ′〉
only if monitor MRS takes a step to monitor configuration
〈γ′, σ′〉, and variables X ⊆ dom(γ′) cannot influence any
output in the remainder of the program. Recall that the small
step judgment for monitor configurations takes, in addition
to the internal event, the original memory m and the term t′

that will result if monitored execution is allowed to proceed
one step. Thus, term t′ is the remainder of the program.

1 // γ(x) = H, γ(y) = L, γ(z) = H
2 if z then
3 y := x;
4 outputL(x)
5 else
6 y := z;
7 outputL(1)

Figure 9. Example program

To illustrate the behavior of monitor MPERF, consider the
example program in Figure 9. We assume a two-point lattice,
{L,H}, where L v H and H 6v L and assume that at the
beginning of the program variables x and z contain sensitive
information (level H), and variable y contains non-sensitive
information (level L). At line 2, the program branches on the
value of z. Suppose the true branch is taken. The remainder
of the program is then the term

t′ ≡ y := x; outputL(x); end; outputL(1).

Clearly variable z can no longer influence any output
statement—it doesn’t occur in t′—and so the monitor can
stop tracking it. Similarly, variable y can no longer influence
any output statement, and the monitor can stop tracking it,
even though the assignment in line 3 would otherwise have
raised the security level of y to H . Variable x may affect
an output produced by t′, so the monitor must continue to
track its security level.

Suppose instead the false branch is taken. The remainder
of the program is then the term y := z; end; outputL(1) and
the monitor can immediately stop tracking all variables x, y,
and z.

Figure 10 compares the monitor environments of MRS and
MPERF after each line in the example program. We write ∅
for the monitor environment with an empty domain and write
“—” when control flow does not reach the line.

C. Security

Monitor MPERF enforces the same termination-insensitive
noninterference security condition as MRS (stated in Defini-
tion 1). Rather than show this directly, we prove that MPERF

is behaviorally equivalent to MRS: they allow exactly the
same executions of the program.

6

Line MRS MPERF

z 6= 0 z = 0

1 x 7→ H, y 7→ L, z 7→ H x 7→ H, y 7→ L, z 7→ H x 7→ H, y 7→ L, z 7→ H
2 x 7→ H, y 7→ L, z 7→ H x 7→ H ∅
3 x 7→ H, y 7→ H, z 7→ H x 7→ H —
4 x 7→ H, y 7→ H, z 7→ H ∅ —
6 x 7→ H, y 7→ H, z 7→ H — ∅
7 x 7→ H, y 7→ H, z 7→ H ∅ ∅

Figure 10. Monitor state after executing each line of the example program given in Figure 9

First, we say that monitor M1 is at least as restrictive
as M2 if for every execution that M1 allows from some
initial configuration, M2 allows an execution from the same
configuration with the same sequence of outputs.

Definition 2 (At least as restrictive). Monitor M1 is at least
as restrictive as M2 if whenever

〈〈t,m〉, 〈γ, σ〉〉
~β−−→
M1

∗ 〈〈t′,m′〉, 〈γ′, σ′〉〉,

then there exists γ′′ and σ′′ such that

〈〈t,m〉, 〈γ, σ〉〉
~β−−→
M2

∗ 〈〈t′,m′〉, 〈γ′′, σ′′〉〉.

We say two monitors are behaviorally equivalent if they
are both at least as restrictive as each other; that is, they
allow exactly the same executions.

Definition 3 (Monitor behavioral equivalence). Monitors
M1 and M2 are behaviorally equivalent if and only if M1 is
at least as restrictive as M2 and M2 is at least as restrictive
as M1.

Monitors MPERF and MRS are behaviorally equivalent,
which allows us to easily prove that MPERF enforces the
same security condition as MRS. Proofs of all results can be
found in the accompanying technical report [23].

Lemma 1. MPERF is behaviorally equivalent to MRS.

Proof (sketch): We use a standard noninterference proof to
show that monitored execution under the two monitors is
observationally equivalent. Interestingly, all outputs of the
monitored execution are regarded as observable; we show
that the variables our static analysis decides to stop tracking
do not interfere with any of the outputs of the program, and
thus both monitors make the same decisions regarding which
outputs to allow. �

Theorem 2. Monitor MPERF is secure.

Proof: Immediate from Lemma 1 and Theorem 1. �

D. Implementation issues

Cost of selectively tracking variables. Our static analy-
sis identifies variables that the monitor can safely ignore.
However, this provides a performance benefit only when
it reduces the work that the monitor must perform. In a
naı̈ve implementation of monitor MPERF, selectively tracking

variables may increase runtime overhead if the monitor is
continually checking which variables to track.

We anticipate that performance is most likely to be im-
proved for inlined information-flow monitors (e.g., [24, 25]),
where the instrumented code is specialized for tracking just
a subset of variables. For example, if the monitor needs to
track variables y and z but not x, then no instrumentation
is required for an assignment x := y + z, thus removing
the lookup of the security levels of y and z and the join
operation, without requiring an explicit check to determine
whether x should be tracked.

We are developing an inlined information-flow monitor
with the ability to dynamically generate different versions of
the same code that track different sets of variables. Because
of the high overhead of dynamic code generation, this mon-
itor will be most useful for applications in which sensitive
data is infrequently introduced into the system. Executions
will be lightly instrumented until sensitive information is
introduced, at which time additional monitoring code will
be generated to track information that may cause a security
violation. The system can stop tracking variables (and return
to the version of code with little instrumentation) once
static analysis determines that a security violation can no
longer occur. In a setting where sensitive data is frequently
introduced, the benefit of reducing the number of variables
that must be tracked may be less than the cost of generating
several versions of code.

However, even for monitor implementations that cannot
selectively start and stop tracking variables, or where the cost
of selectively starting and stopping tracking variables is high,
our static analysis may provide some performance benefits.
If a variable can no longer affect whether a security violation
occurs, it is sound to assign it any security level, as doing
so will not change the behavior of the monitor. For some
security lattices, join and comparison operations are less
expensive for certain security levels. For example, if security
levels are represented as partial functions (e.g., [26, 27]) then
join and comparison operations can be more efficient on the
partial function with an empty domain. Instead of removing
variables from the domain of the monitor environment, the
monitor can set the level of these variables to a level efficient
for storage and computation.
On-the-fly analysis vs. pre-execution analysis. The opera-
tional semantics for monitor MPERF implies on-the-fly static
analysis, but our analysis can also be performed prior to

7

execution. Performing the static analysis on-the-fly allows its
use with dynamic languages, in a similar manner to the use
of on-the-fly static analysis by Askarov and Sabelfeld [12].
However, if used in this way, performing the static analysis
on every execution step would most likely be too expensive.
Instead, some subset of execution steps should perform the
static analysis. This could be determined according to a
schedule (e.g., every k steps), based on certain internal
events (e.g., on every branch command and on the execution
of dynamically-generated code, i.e., eval commands), or at
program points identified by some static analysis.

If the static analysis is performed prior to execution, then
the results of the analysis must somehow be communicated
to the monitor. As we discuss above, we believe inlining
the monitor and specializing the inlined code may be the
most efficient way to take advantage of the static analysis
results. However, other mechanisms are possible, such as
the creation of a data structure that allows the monitor to
look up results based on the remainder of the program to
execute, perhaps represented by the current value of the
program counter. Note that this data structure may contain
just a subset of the analysis results; for example, only for
program points where the set of variables to stop tracking
is above some threshold size.
Implementing the analysis. The analysis is currently
phrased as a syntax-directed type system that can check
whether judgment ⊥ ` ⊥[X 7→ >] {t}Γ holds for some
set of variables X . However, to be useful, the analysis
needs to infer the set of variables X . This corresponds to
a principal typing problem [28], where given term t, we
want to find a typing environment Γ such that ⊥ ` Γ {t}Γ′

holds, and Γ maps as many variables as possible to >.
Hunt and Sands [29] present a polynomial-time algorithm
for inference of principal types for flow-sensitive security-
type systems. Their results can be easily adapted for our
setting, giving us an efficient algorithm to implement the
analysis.

IV. MEMORY ABSTRACTIONS

In this section, we extend the hybrid information-flow
monitor to a language with dynamically allocated memory
and first-class references. The extended monitor is param-
eterized by a sound memory abstraction. Interestingly, not
all sound memory abstractions are suitable for use in an
information-flow monitor. We state sufficient conditions on
the information-flow monitor and memory abstraction to
enforce security (and informally describe necessary con-
ditions). Many practical memory abstractions satisfy these
sufficient conditions.

By being precise about the conditions for soundly in-
corporating a memory abstraction into an information-flow
monitor, we allow monitor implementations to find an appro-
priate balance between efficiency and precision. In addition,
these conditions highlight opportunities for the development

Values v ::= . . . | r
Expressions e ::= . . . | ∗e
Commands c ::= . . . | x := new(e) | e1 ← e2

e,m ⇓ r m(r) = v

∗e,m ⇓ v

e,m ⇓ v r 6∈ dom(m)

〈x := new(e),m〉 new(x,e,r)−−−−−−−→ 〈stop,m[x 7→ r][r 7→ v]〉

e1,m ⇓ r e2,m ⇓ v

〈e1 ← e2,m〉
store(e1,e2,r)−−−−−−−−→ 〈stop,m[r 7→ v]〉

Figure 11. Language extensions for dynamic memory

of novel memory abstractions for information-flow control
which use run-time information, including information about
the state of the monitor, to improve precision.

A. Language extensions

We extend the simple imperative language by adding
the new syntactic forms and operational semantics rules
given in Figure 11. Program configurations remain the same,
although memories m now map both variables and concrete
locations (or, simply, locations) to values. We use metavari-
able r to range over locations. Values in the language are
now integers or locations.

Expression ∗e evaluates e to a location r and looks up the
contents of r in the current memory. Command x := new(e)
creates a new location r, evaluates e to a value v, and updates
the memory so that variable x maps to r and r maps to v.
Internal event new(x, e, r) is generated when x := new(e)
executes. Command e1 ← e2 evaluates e1 to a location r,
evaluates e2 to a value v, updates the memory so that r maps
to v, and issues internal event store(e1, e2, r).

The new language features enable new information flows.
In addition to the information stored in locations, the choice
of location accessed can be an information channel. When
a pointer is dereferenced, the security level of the result
depends on the security level of the pointer, as well as the
security level of the value stored in the dereferenced loca-
tion. Intuitively, a pointer dereference acts like a conditional,
where the location accessed is conditional on the value of
the pointer. To be sound, information-flow monitors must
track these flows.

For example, consider the program in Figure 12. It al-
locates two locations, a and b, initialized to zero and one
respectively. It then sets variable y to point to one of them
based on sensitive information stored in variable h. The
program contains three output commands. The security level
of each output depends on the security level of both the
pointer expression and the value stored in the location.

Line 6 outputs the contents of location a, which is always
zero, reveals no sensitive information, and is thus secure.
Line 7 outputs the contents of the location pointed to by

8

1 a := new(0); b := new(1);
2 if (h > 0) // variable h contains sensitive data
3 y := a
4 else
5 y := b;
6 outputL(∗a); // safe output
7 outputL(∗y); // unsafe output
8 y← 2;
9 outputL(∗a) // unsafe output

Figure 12. Example of information flow through pointer value

y. Which location y points to (and what value is output)
depends on sensitive information. Thus, the security level
of the value output is sensitive, and the output is insecure.

Line 9 occurs after the value 2 is stored into the location
pointed to by y. One of the locations a or b is updated,
depending on the sensitive value h. Regardless of which
location is updated, the value stored in location a now
depends on the sensitive value h, which makes the output
insecure.

B. Sound memory abstractions

A memory abstraction for a program consists of a set
of abstract locations and a function points-to(·, ·). During
execution, concrete locations are allocated. Each concrete
location is represented by one or more abstract locations,
and each abstract location represents zero or more con-
crete locations. For a given expression e and location r,
points-to(e, r) is a set of abstract locations. Intuitively,
soundness of a memory abstraction requires that given a set
of expressions e that evaluate to the same concrete location
r, there is at least one abstract location common to all of the
expressions’ points-to sets. Thus, the function points-to(·, ·)
allows us to reason soundly about possible aliasing.

We say that expression e evaluates to location r during the
execution of c if either e,m ⇓ r occurs during the execution
of c or e is a variable x and judgment

〈x := new(e′),m〉 −→ 〈stop,m[x 7→ r][r 7→ v]〉

occurs during the execution.

Definition 4 (Sound memory abstraction). A memory ab-
straction for program c is sound if for any execution of c
and location r, if {e1, . . . , ek} is a set of expressions that
all evaluate to location r during the execution of c, then

k⋂
i=1

points-to(ei, r) 6= ∅.

Note that a memory abstraction may ignore the location
argument of points-to(·, ·) if, for example, the memory
abstraction is generated statically. We include the loca-
tion argument to allow memory abstractions that use run-
time information. For presentation purposes, we provide
points-to(·, ·) with only an expression and the location

NEW
A = points-to(x, r)

` = lev(e, γ,m) t lev(σ)

γ′(s) =

{
` t γ(s) s ∈ A
γ(s) otherwise

〈γ, σ〉 new(x,e,r),t,m−−−−−−−−−→
MMEM

〈γ′[x 7→ lev(σ)], σ〉

STORE
A = points-to(e1, r)

` = lev(e1, γ,m) t lev(e2, γ,m) t lev(σ)

γ′(s) =

{
` t γ(s) a ∈ A
γ(s) otherwise

〈γ, σ〉 store(e1,e2,r),t,m−−−−−−−−−−−→
MMEM

〈γ′, σ〉

BRANCH

lev(e, γ,m) t lev(σ) = `

〈γ, σ〉 branch(e,c),t,m−−−−−−−−−−→
MMEM

〈γ, (`,ANALYZE(c,m, γ, `)) : σ〉

lev(e, γ,m) =

 ⊔
x∈dom(γ)∩vars(e)

γ(x)

t ⊔
a∈dom(γ)∩A

γ(a)

where

A =
⋃
{points-to(e′, r) | ∗e′ appears in e ∧ (e′,m ⇓ r)}.

Figure 13. Monitor with memory abstractions, MMEM

it evaluates to. This essentially restricts memory abstrac-
tions to flow-insensitive context-insensitive abstractions. We
could generalize to allow flow-sensitive, context-sensitive,
and even path-sensitive abstractions by providing additional
arguments, such as the current program configuration, the
current monitored program configuration, or a trace of
program execution. For simplicity of presentation, we refrain
from doing so.

C. Monitor MMEM

We define a new monitor, MMEM, that can soundly track
information flow for the language defined above. The moni-
tor is parameterized on a sound memory abstraction and an
analysis algorithm.

Monitor configurations for MMEM remain unchanged, al-
though the domain of monitor environments γ is extended
to include abstract locations. Intuitively, MMEM records for
each abstract location a the level of information that may
be learned by examining the contents of any of the concrete
locations that a represents.

All small-step semantics inference rules for monitor MRS
are also inference rules for monitor MMEM, with the excep-
tion of the rule for internal event branch(e, c). Additional

9

inference rules for MMEM are given in Figure 13.
When event new(x, e, r) (generated by allocation x :=

new(e)) is encountered, the monitor updates the level of
both the variable x and the abstract locations that represent
the newly allocated location r. The level of x is set to
the program counter level lev(σ), since a pointer to the
newly created reference reveals only that it was created.
Abstract locations, on the other hand, are weakly updated
to the join of the security level of expression e and the
program counter level. Weak update is required because an
abstract location may represent more than just one concrete
location. As with other memory analyses, if it can be proved
that an abstract memory location represents a single concrete
location, strong update can be used (e.g., [16]).

The security level of expression e, lev(e, γ,m), is the
join of the levels of all variables that occur in e and the
levels of all locations that might be dereferenced when e
is evaluated. That is, if expression ∗e′ is a subexpression
of e and e′,m ⇓ r, then location r will be dereferenced;
the monitor is tracking the security level of those locations
using abstract locations points-to(e′, r), and so lev(e, γ,m)
is at least as high as γ(a) for all abstract locations a in the
points-to set of e′.

Updating a location, e1 ← e2, generates event
store(e1, e2, r). The monitor updates all abstract loca-
tions that represent a location that e1 may evaluate to:
points-to(e1, r). These locations are weakly updated with
the join of the program counter level, the level of the value
being stored (lev(e2, γ,m)), and the level of the pointer to
the updated location (lev(e1, γ,m)), since which location is
updated may reveal information.

We must also modify the rule for branches. Like monitor
MRS, when MMEM receives event branch(e, c), indicating
the program has entered a branch guarded by expression e
where c is the branch not taken, it pushes an analysis of
the effects of c onto the monitor stack. However, in addition
to possible updates to variables, the analysis must now also
reason about possible updates to locations.

Since the specifics of this analysis may vary by memory
abstraction, we parameterize our monitor with an analysis
algorithm ANALYZE(c,m, γ, `), which returns a monitor
environment that approximates the environment that would
result from the monitored execution of command c, the
branch that was not taken.

In order for monitor MMEM to soundly enforce security,
the analysis algorithm must meet certain requirements. The
key insight is that because the execution, or non-execution,
of c depends on information at level `, an entity that
cannot observe information at level ` should not be able to
distinguish between the monitor actually executing c (and
updating the monitor configuration accordingly) and the
monitor approximating the effect of executing c by using
the analysis algorithm. This means that if executing c may
change the security level of a variable or abstract location to

` or above, then ANALYZE(c,m, γ, `) must return a monitor
environment where the level of that variable or abstract
location is also ` or above. This is a sufficient condition
for MMEM to soundly enforce security.

Definition 5 (Sufficient analysis algorithm). Analysis algo-
rithm ANALYZE(c,m, γ, `H) is sufficient if for all `L, m′,
and σ such that `H 6v `L, and m =`L

γ m′, and lev(σ) = `H ,
if

〈〈c,m′〉, 〈γ, σ〉〉 −→∗ 〈〈stop,m′′〉, 〈γ′, σ〉〉
then

ANALYZE(c,m, γ, `H) =`L γ′

where γ0 =`L γ1 if and only if dom(γ0) = dom(γ1) and
∀s ∈ dom(γ0). γ0(s) v `L ∨ γ1(s) v `L ⇒ γ0(s) = γ1(s).

This property is sufficient but not necessary. To obtain
a necessary condition, it must be weakened in two ways.
First, instead of quantifying over all memories m′ that are
`L-equivalent to m, it is enough to quantify over memo-
ries that can be obtained by an execution of the program
that, to an observer at level `L, appears equivalent to the
execution that produced m. Second, monitor environments
ANALYZE(c,m, γ, `H) and γ′ do not need to be equal on
every variable or abstract location that either environment
maps to level `L or below. Instead, they need only agree
on variables and abstract locations that could later affect
the output of the program. We avoid stating the necessary
property here due to the additional complexity of notation
that would be required, and because the sufficient property
described above is weak enough to use for all the memory
abstractions we consider.

Theorem 3. Monitor MMEM, when instantiated with a sound
memory abstraction and sufficient analysis algorithm, is
secure.

Relationship of MMEM to MRS and MPERF. The
function ANALYZE(c,m, γ, `) is a generalization of the
function UPDATE`(c) used in MRS. Modulo providing
UPDATE`(c) with additional arguments (the memory m and
the monitor environment γ), the sufficient conditions for
ANALYZE(c,m, γ, `) to make MMEM soundly enforce secu-
rity are also sufficient for UPDATE`(c) to make MRS soundly
enforce security. This would allow for more sophisticated
versions UPDATE`(c). For example, an analysis could ignore
the effect of dead code.

The selective tracking technique developed in Section III
and used in MPERF can also be used in MMEM by extending
the typing environments to also map abstract locations to
security levels.

D. An example instantiation

To illustrate the use of our framework, we now describe
a sound information-flow monitor based on a unification-
or inclusion-based points-to analysis (e.g., [14, 13]). In this

10

memory abstraction, abstract locations are allocation sites—
program points that create new locations. Each concrete
location is represented by the abstract location corresponding
to the allocation site at which it was created. The analysis
computes points-to sets for each expression. If expression e
evaluates to a concrete location r, then the allocation site
of r is included in the points-to set of e, points-to(e, r).
Note that points-to(e, r) ignores the second argument r,
the concrete location to which e evaluates.

This memory abstraction satisfies Definition 4; if a set
of expressions evaluate to the same concrete location r,
then their points-to sets will all include the abstract location
representing the allocation site of r, and thus have a non-
empty intersection.

To complete the monitor, we define ANALYZE(c,m, γ, `)
as the natural generalization of UPDATE`(c) in the pres-
ence of references. Function ANALYZE(c,m, γ, `) returns a
monitor environment γ′ such that for every variable x, if
c contains an assignment to x, then γ′(x) = `, otherwise
γ′(x) = γ(x); and for every statement e1 ← e2 in c,
∀a ∈ points-to(e1, ·), γ′(a) = `, otherwise γ′(a) = γ(a).
This is a sufficient analysis algorithm (Defintion 5) as it
approximates the effects of the monitored execution of c.
Interestingly, the set of variables and abstract locations for
which ANALYZE(c,m, γ, `) sets to security level ` is (and
must be) exactly the set of variables and abstract locations
that would be updated in the monitor environment during
monitored execution of c.

E. Choosing a memory abstraction

No sufficient analysis algorithms. Surprisingly, there are
sound memory abstractions for which there are no sufficient
analysis algorithms. This shows that there are limits on
which sound memory abstractions can be incorporated into
secure information-flow monitors.

Consider a sound memory abstraction that for each
concrete location r has an abstract location ar and
points-to(e, r) = {ar}. A monitor using this memory
abstraction is tracking information flow very precisely, on a
per-location basis. However, no sufficient analysis algorithm
exists. Consider a program where depending on sensitive
information, branch c may or may not be taken. Command c
performs some computation and, based on the result, decides
to update one of two locations. To accurately approximate
the effect of executing c, the analysis algorithm must de-
termine which of the two locations is updated, which is
undecidable, in general.
Novel memory abstractions. The statement of sufficient
conditions for memory abstractions and analysis algorithms
opens the possibility of developing novel memory abstrac-
tions that use security-relevant information to improve the
precision and efficiency of information-flow monitoring.

For example, we can improve the precision of the example
monitor in Section IV-D by tracking information flow by

concrete location when updating a location in a context
where both the program counter level and the pointer expres-
sion have security level ⊥L. In this situation, the choice of
location to update and the decision to update do not depend
on sensitive information.

To achieve this, we extend the points-to(·, ·) function to
take additional arguments: the current monitor configuration
〈γ, σ〉 and an argument write which is True only when
points-to is called to find the set of abstract locations for a
concrete location that is being allocated or updated.

The new memory abstraction contains one abstract loca-
tion for each concrete location. If write = True and the
program counter level and the security level of the pointer
expression e are both ⊥L, then points-to(e, r, 〈γ, σ〉,write)
returns {ar}, the abstract location corresponding to the
concrete location r; otherwise, it returns the set of abstract
locations representing all concrete locations from an alloca-
tion site in the points-to set of e, as computed by the points-
to analysis. This memory abstraction is sound and in some
cases more precise than the memory abstraction presented
in Section IV-D.

Function ANALYZE(c,m, γ, `) for this monitor returns a
monitor environment γ′ such that if the program counter
level lev(σ) is ⊥L, then γ′ = γ. Otherwise, for every
variable x, if c contains an assignment to x, then γ′(x) = `,
otherwise γ′(x) = γ(x); and for every statement e1 ← e2
in c, ∀a ∈ points-to(e1, ·, ·,False), γ′(a) = `, otherwise
γ′(a) = γ(a).

This analysis algorithm is sufficient and is able to track
information flow precisely (i.e., at the granularity of single
concrete locations), provided neither control flow nor the
choice of which location to update depends on sensitive in-
formation. That is, explicit information flows can be tracked
precisely.
Efficiency/precision tradeoffs. The memory abstraction
used has a significant impact on the performance of an
information-flow monitor. A more precise memory abstrac-
tion may have more abstract locations, which will increase
both the storage required for monitor state and the complex-
ity and number of security level updates.

The monitor we have defined supports a variety of mem-
ory abstractions and analysis functions. This allows us to
consider trade-offs between efficient and precise memory
abstractions with clear requirements for sound information-
flow monitoring. At one extreme is a memory abstraction
that maps all locations to a single abstract location. This will
be sound, but very imprecise—a single piece of sensitive
information stored in a location will irrevocably taint all
memory. At the other extreme is the most precise sound
memory abstraction, which is unusable in an information-
flow monitor. Between these two extremes are many sound
and useful memory abstractions.

For example, both unification- and inclusion-based pointer
analyses (e.g., [14, 13]) are sufficient under our framework

11

but differ in precision and overhead. In a unification-based
analysis, each allocation site belongs to a single points-to
set. Thus, each points to set can be represented with a single
abstract location. This is not the case for an inclusion-based
analysis, which may be more precise, but at the expense of
increasing both the number of abstract locations that must
be tracked and the number of join operations on security
levels. Shape analysis (e.g., [17]) is yet more precise, again
in exchange for increased analysis complexity and runtime
overhead. Our results allow all of these analyses and memory
abstractions to be used soundly.
Efficient runtime representations. Some memory abstrac-
tions are more amenable to efficient representation at run-
time. Some systems that use regions (e.g., [30]) or pool
allocators (e.g., [31]) implicitly represent their abstract lo-
cations at run-time and can easily compute which abstract
location(s) correspond to a given concrete location. An
information-flow monitor can augment the data structures
used to maintain regions and pools with security levels
to efficiently track security state. An inlined information-
flow monitor could further reduce overhead by directly
inlining references to abstract locations where lookups are
performed.

V. RELATED WORK

Russo and Sabelfeld [11] show the impossibility of
sound, purely dynamic, flow-sensitive information-flow con-
trol. They also present a series of hybrid information-flow
monitors, which combine dynamic and static analysis to
provide sound flow-sensitive information control that is more
precise than either purely static or purely dynamic tech-
niques. Their monitors differ in behavior on insecure output:
either stopping execution, suppressing output, or providing
a default output. We extend their work by showing how
additional static analysis can reduce the runtime overhead
of information-flow monitors and show how a wide range
of memory abstractions can be soundly incorporated into
hybrid information-flow monitors.

Chandra and Franz [10] present a hybrid information-
flow monitor for the Java Virtual Machine (JVM) that we
believe is unsound. While they are careful to incorporate a
sound pointer analysis into their approximation of untaken
branches, on explicit updates they increase only the label of
the object being modified. As a result, their monitor fails to
control information flows through pointer dereference—they
unknowingly trade soundness for precision. This highlights
the importance of considering soundness while attempting
to increase the precision of memory abstractions.

Le Guernic et al. [9] also present a flow-sensitive hybrid
information-flow monitor which is subsumed by the moni-
tors of Russo and Sabelfeld [11]. Le Guernic [32] extends
this work to enforce noninterference in concurrent programs
by ensuring the monitor prevents synchronization in program
contexts with high-security program counter levels [33].

Shroff et al. [8] consider dynamic information-flow con-
trol in a language with dynamic memory allocation. Their
system discovers dependencies within a program, either
dynamically over several executions or statically. To deal
with aliasing, their system must discover which dereferences
may depend on which store updates, and in essence, hard-
codes a particular pointer analysis. We show how to soundly
incorporate a variety of memory abstractions, allowing a
choice in the tradeoff between precision and efficiency.

Nair et al. [34] present Trishul, a hybrid system for
information-flow control in the JVM that performs static
analysis to determine which locations may be modified by
code that is not executed and uses the results to soundly track
implicit information flows. When the locations modified by
code cannot be precisely determined, Trishul uses a global
taint to conservatively approximate effects, essentially a
single, coarse, abstract memory location.

Austin and Flanagan [6] consider sound purely-dynamic
info flow tracking. They achieve soundness by requiring “no
sensitive upgrade”: non-sensitive memory locations cannot
be upgraded to sensitive by assignment within a program
context with a sensitive program counter level or by as-
signment via a sensitive pointer. They suggest modifying
a program to preemptively upgrade non-sensitive locations
that might otherwise require sensitive upgrade. This trans-
formation results in similar precision to hybrid monitors
that upgrade locations based on branches that could have,
but were not, executed and is similar to the transformation
implemented by Rifle [35]. They also introduce sparse
labeling, where security labels are tracked explicitly only for
data that migrates between information flow domains. They
use sparse labeling to exploit label locality: the fact that
items in a data structure tend to have the same security level.
We believe that this complements our approach (i.e., tracking
only items that may cause a security violation), and may
lead to efficient representations of monitor environments in
hybrid monitors.

Vachharajani et al. [35] propose Rifle, a system with archi-
tectural support for tracking information flow. Architectural
support has the potential to improve the performance of
information flow tracking, but is less portable than language-
level approaches. Rifle tracks only explicit flows of infor-
mation and handles implicit flows by performing a binary
translation that makes implicit flows explicit, using a static
analysis to reason about implicit information flows. No proof
of soundness is given.

Newsome and Song [21] implement TaintCheck, which
instruments binaries to track the flow of information within
the program at byte-level granularity. Although they do not
track implicit flows, they record detailed information about
how data flows within the system. These detailed traces are
analogous to a rich lattice of security levels. They report
high overheads for their instrumented execution, particular
of CPU-bound computation, and could possibly benefit from

12

our static analysis to reduce some of the instrumentation.
Tripp et al. [36] present Taint Analysis for Java (TAJ), a

static analysis tool for detecting vulnerabilities in Java web
applications. Their analysis does not consider implicit flows,
but uses a novel technique of hybrid thin slicing to detect
data dependencies of tainted sources.

Dynamic languages. Askarov and Sabelfeld [12] consider
an information-flow monitor for dynamic languages, which
can generate executable code at runtime. Their monitor
uses on-the-fly static analysis of the dynamically generated
code. Chugh et al. [37] consider information flow-control in
JavaScript, a dynamic language, and perform a lightweight
on-the-fly static analysis to determine whether dynamically
generated code is secure; parameters for the on-the-fly static
analysis are determined by a static analysis of the static
portions of the code. Our results are applicable to dynamic
languages, and our static analysis for selectively tracking
variables can be performed on the fly.

Expressive language features. Russo and Sabelfeld [38]
present a monitor for soundly tracking and controlling
information flow due to timeouts, a mechanism for executing
code snippets after a specified delay. Our selective tracking
technique could be extended to this model by appropriately
modifying the static analysis used. Russo et al. [39] precisely
track and control information flow in dynamic tree struc-
tures. While some memory abstractions can reason quite
precisely about tree structures, their monitor uses domain-
specific knowledge and is thus likely more precise than ours,
regardless of the memory abstraction used.

Inlining information-flow monitors. Chudnov and Nau-
mann [24] prove that the information-flow monitor of Russo
and Sabelfeld [11] can be inlined. Inlining enables compiler
optimizations for the monitoring and facilitates incorporation
of the monitor into existing systems. Magazinius et al.
[25] present and prove sound a framework for inlining
dynamic information-flow monitors that use the “no sensitive
upgrade” mechanism to soundly control implicit information
flows. Their framework permits on-the-fly inlining, thus
providing support for dynamic languages. Venkatakrishnan
et al. [40] present a program transformation that, in essence,
inlines a hybrid information-flow monitor. They prove that
the transformation enforces a noninterference-based security
condition. Our work complements monitor inlining, and we
believe the most benefit will be gained by applying our
results to inlined monitors.

VI. CONCLUSION

We present two ways to use static analysis to increase
the efficiency of hybrid information-flow monitors. First,
we demonstrate a sound technique for selectively tracking
variables during monitored program executions. Second,
we derive sufficient conditions for soundly incorporating a

variety of memory abstractions into a monitor for languages
with dynamically allocated memory.
Selective tracking. Information-flow monitoring signifi-
cantly decreases program performance. Part of this overhead
is effort wasted on tracking security levels of data that cannot
cause a security violation. We present a simple static analysis
to soundly determine when variables can no longer influence
dangerous operations and show that this analysis can be
soundly incorporated into an information-flow monitor.
Memory abstractions. Practical information-flow control
systems must deal with realistic language features, including
dynamically allocated memory. The choice of memory ab-
straction used by an information-flow monitor has a large
effect on both its precision and efficiency. While many
information-flow control systems reason about memory,
no clear requirements have been defined for permissible
memory abstractions. We present sufficient conditions for
incorporating memory abstractions and discuss how they
apply to a variety of memory abstractions. This enables a
principled exploration of tradeoffs between precision and
efficiency, and opens the possibility of novel useful memory
abstractions for information-flow monitors.

We are currently developing a system that dynamically
generates instrumented code to enforce noninterference,
guided by the results from the paper.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and Vikram Adve,
John Criswell, Arushi Aggarwal, Will Dietz, and Gregory
Malecha for helpful feedback on earlier versions of this
paper. This research is sponsored by the Air Force Research
Laboratory.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-based
information-flow security,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 1, pp. 5–19, Jan.
2003.

[2] D. Volpano, G. Smith, and C. Irvine, “A sound type
system for secure flow analysis,” Journal of Computer
Security, vol. 4, no. 3, pp. 167–187, 1996.

[3] A. C. Myers, “JFlow: Practical mostly-static infor-
mation flow control,” in Conference Record of the
Twenty-Sixth Annual ACM Symposium on Principles
of Programming Languages. New York, NY, USA:
ACM Press, Jan. 1999, pp. 228–241.

[4] V. Simonet, “The Flow Caml System: documentation
and user’s manual,” Institut National de Recherche en
Informatique et en Automatique (INRIA), Technical
Report 0282, Jul. 2003.

[5] J. S. Fenton, “Memoryless subsystems,” Computer
Journal, vol. 17, no. 2, pp. 143–147, May 1974.

[6] T. H. Austin and C. Flanagan, “Efficient purely-
dynamic information flow analysis,” in Proceedings of

13

the 2009 Workshop on Programming Languages and
Analysis for Security, 2009.

[7] A. Sabelfeld and A. Russo, “From dynamic to static
and back: Riding the roller coaster of information-
flow control research,” in Proceedings of Andrei Ershov
International Conference on Perspectives of System
Informatics, 2009, pp. 352–365.

[8] P. Shroff, S. F. Smith, and M. Thober, “Dynamic
dependency monitoring to secure information flow,”
in Proceedings of the 20th IEEE Computer Security
Foundations Symposium. IEEE Computer Society,
2007, pp. 203–217.

[9] G. Le Guernic, A. Banerjee, T. Jensen, and D. A.
Schmidt, “Automata-based confidentiality monitoring,”
Proceedings of the 11th Annual Asian Computing Sci-
ence Conference, pp. 75–89, 2006.

[10] D. Chandra and M. Franz, “Fine-grained information
flow analysis and enforcement in a Java virtual ma-
chine,” in Proceedings of the 23rd Annual Computer
Security Applications Conference, 2007.

[11] A. Russo and A. Sabelfeld, “Dynamic vs. static flow-
sensitive security analysis,” in Proceedings of the IEEE
Computer Security Foundations Symposium, 2010.

[12] A. Askarov and A. Sabelfeld, “Tight enforcement of
information-release policies for dynamic languages,” in
Proceedings of the IEEE Computer Security Founda-
tions Symposium, 2009.

[13] L. O. Andersen, “Program analysis and specialization
for the C programming language,” Ph.D. dissertation,
DIKU, University of Copenhagen, May 1994.

[14] B. Steensgaard, “Points-to analysis in almost linear
time,” in Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, 1996, pp. 32–41.

[15] A. Milanova, A. Rountev, and B. G. Ryder, “Param-
eterized object sensitivity for points-to analysis for
Java,” ACM Transactions on Software Engineering and
Methodology, vol. 14, no. 1, pp. 1–41, 2005.

[16] O. Lhoták and K.-C. A. Chung, “Points-to analysis
with efficient strong updates,” in Proceedings of the
38th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2011, pp. 3–
16.

[17] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape
analysis via 3-valued logic,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 24,
no. 3, pp. 217–298, 2002.

[18] M. Tofte and J.-P. Talpin, “Region-based memory
management,” Information and Computation, vol. 132,
no. 2, pp. 109–176, 1997.

[19] D. Gay and A. Aiken, “Memory management with
explicit regions,” in Proceedings of the 1998 ACM SIG-
PLAN Conference on Programming Language Design
and Implementation. New York, NY, USA: ACM

Press, 1998, pp. 313–323.
[20] D. E. Denning, “A lattice model of secure information

flow,” Communications of the ACM, vol. 19, no. 5, pp.
236–243, 1976.

[21] J. Newsome and D. Song, “Dynamic taint analysis for
automatic detection, analysis, and signature generation
of exploits on commodity software,” in Proceedings of
the Network and Distributed System Security Sympo-
sium, 2005.

[22] S. Hunt and D. Sands, “On flow-sensitive security
types,” in Conference Record of the Thirty-Third An-
nual ACM Symposium on Principles of Programming
Languages. New York, NY, USA: ACM Press, Jan.
2006, pp. 79–90.

[23] S. Moore and S. Chong, “Static analysis for efficient
hybrid information-flow control,” Harvard University,
Tech. Rep. TR-05-11, Apr. 2011.

[24] A. Chudnov and D. A. Naumann, “Information flow
monitor inlining,” in Proceedings of the 23rd IEEE
Security Foundations Symposium, 2010.

[25] J. Magazinius, A. Russo, and A. Sabelfeld, “On-the-fly
inlining of dynamic security monitors,” in Proceedings
of the IFIP International Information Security Confer-
ence, 2010.

[26] A. C. Myers and B. Liskov, “A decentralized model
for information flow control,” in Proceedings of the
16th ACM Symposium on Operating System Principles.
New York, NY, USA: ACM Press, 1997, pp. 129–142.

[27] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris, “Labels and event processes in the Asbestos
operating system,” in Proceedings of the 20th ACM
Symposium on Operating System Principles. New
York, NY, USA: ACM Press, Oct. 2005.

[28] T. Jim, “What are principal typings and what are they
good for?” in Proceedings of the 23rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languagesg Languages, 1996, pp. 42–53.

[29] S. Hunt and D. Sands, “From exponential to
polynomial-time security typing via principal types,”
in Proceedings of the 20th European Symposium on
Programming, 2011.

[30] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang,
and J. Cheney, “Region-based memory management in
Cyclone,” in Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and
Implementation. New York, NY, USA: ACM Press,
2002, pp. 282–293.

[31] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Se-
cure virtual architecture: A safe execution environment
for commodity operating systems,” in Proceedings of
the Twenty First ACM Symposium on Operating Sys-
tems Principles, October 2007.

[32] G. Le Guernic, “Automaton-based Confidentiality

14

Monitoring of Concurrent Programs,” in Proceedings
of the 20th IEEE Computer Security Foundations Sym-
posium, 2007, pp. 218–232.

[33] A. Sabelfeld, “The impact of synchronisation on secure
information flow in concurrent programs,” in Proceed-
ings of Andrei Ershov 4th International Conference on
Perspectives of System Informatics, ser. Lecture Notes
in Computer Science, vol. 2244. Springer-Verlag,
2002, pp. 225–239.

[34] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S.
Tanenbaum, “A virtual machine based information flow
control system for policy enforcement,” Electronic
Notes in Theoretical Computer Science, vol. 197, no. 1,
pp. 3–16, February 2008.

[35] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan,
G. Ottoni, J. A. Blome, G. A. Reis, M. Vachharajani,
and D. I. August, “RIFLE: An architectural frame-
work for user-centric information-flow security,” in
Proceedings of the 37th International Symposium on
Microarchitecture. IEEE Computer Society, Dec.
2004.

[36] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and
O. Weisman, “TAJ: Effective taint analysis of web
applications,” in Proceedings of the ACM SIGPLAN
2009 Conference on Programming Language Design
and Implementation, 2009, pp. 87–97.

[37] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner,
“Staged information flow for JavaScript,” in Pro-
ceedings of the 2009 ACM SIGPLAN Conference on
Programming Language Design and Implementation,
2009.

[38] A. Russo and A. Sabelfeld, “Securing timeout in-
structions in web applications,” in Proceedings of the
22nd IEEE Computer Security Foundations Sympo-
sium, 2009.

[39] A. Russo, A. Sabelfeld, and A. Chudnov, “Tracking
information flow in dynamic tree structures,” in Pro-
ceedings of the European Symposium on Research in
Computer Security, 2009.

[40] V. Venkatakrishnan, W. Xu, D. C. DuVarney, and
R. Sekar, “Provably correct runtime enforcement of
non-interference properties,” in Proceedings of the In-
ternational Conference on Information and Communi-
cations Security, 2006.

15

