
Exploring and Enforcing Security Guarantees
via Program Dependence Graphs

Andrew Johnson
MIT Lincoln Laboratory and Harvard University, USA

ajohnson@seas.harvard.edu

Lucas Waye Scott Moore
Stephen Chong

Harvard University, USA
lwaye, sdmoore, chong@seas.harvard.edu

Abstract
We present PIDGIN, a program analysis and understanding tool that
enables the specification and enforcement of precise application-
specific information security guarantees. PIDGIN also allows de-
velopers to interactively explore the information flows in their ap-
plications to develop policies and investigate counter-examples.

PIDGIN combines program dependence graphs (PDGs), which
precisely capture the information flows in a whole application, with
a custom PDG query language. Queries express properties about
the paths in the PDG; because paths in the PDG correspond to
information flows in the application, queries can be used to specify
global security policies.

PIDGIN is scalable. Generating a PDG for a 330k line Java ap-
plication takes 90 seconds, and checking a policy on that PDG takes
under 14 seconds. The query language is expressive, supporting a
large class of precise, application-specific security guarantees. Poli-
cies are separate from the code and do not interfere with testing or
development, and can be used for security regression testing.

We describe the design and implementation of PIDGIN and re-
port on using it: (1) to explore information security guarantees in
legacy programs; (2) to develop and modify security policies con-
currently with application development; and (3) to develop policies
based on known vulnerabilities.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Information flow controls; F.3.2 [Pro-
gramming Languages]: Semantics of Programming Languages—
Program analysis; F.3.1 [Programming Languages]: Specifying
and Verifying and Reasoning about Programs—Specification tech-
niques

Keywords Application-specific security, program dependence
graph, graph query language

1. Introduction
Many applications store and compute with sensitive information,
including confidential and untrusted data. Thus, application devel-
opers must be concerned with the information security guarantees

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737957

their application provides, such as how public outputs may reveal
confidential information and how potentially dangerous operations
may be influenced by untrusted data. These guarantees will nec-
essarily be application specific, since different applications han-
dle different kinds of information, with different requirements for
the correct handling of information. Moreover, these guarantees are
properties of the entire application, rather than properties that arise
from the correctness of a single component.

Current tools and techniques fall short in helping develop-
ers address information security. Testing cannot easily verify
information-flow requirements such as “no information about the
password is revealed except via the encryption function.” Exist-
ing tools for information-flow security are inadequate for a variety
of reasons, since they either unsoundly ignore important informa-
tion flows, require widespread local annotations, prevent functional
testing and deployment, or fail to support the specification and en-
forcement of application-specific policies.

We present PIDGIN, a system that uses program dependence
graphs (PDGs) [16] to precisely and intuitively capture the infor-
mation flows within an entire program1 and a custom PDG query
language to allow the exploration, specification, and enforcement
of information security guarantees. PDGs express the control and
data dependencies in a program and abstract away unimportant de-
tails such the sequential order of non-interacting statements. They
are a great fit for reasoning about information security guarantees,
since paths in the PDG correspond to information flows in the ap-
plication. Our queries express properties of PDGs which thus cor-
respond to information-flow guarantees about the application. Our
approach has several benefits:
• PIDGIN security policies are expressive, precise, and applica-

tion specific, since they are queries in a query language de-
signed specifically for finding and describing information flows
in a program. Queries can succinctly express global security
guarantees such as noninterference [18], absence of explicit in-
formation flows, trusted declassification [24], and mediation of
information-flow by access control checks.

• Developers can interactively explore an application’s informa-
tion security guarantees. If there is no predefined security spec-
ification then PIDGIN can be used to quickly explore security-
relevant information flows and discover and specify the precise
security policies that an application satisfies. If a policy is spec-
ified but not satisfied, then PIDGIN can help a developer under-
stand why by finding information flows that violate the policy.

• PIDGIN security policies are not embedded in the code. PIDGIN
policies are specified separate from the code. The code doesn’t
require program annotations nor does it mention or depend on
PIDGIN policies. This enables the use of PIDGIN to specify secu-

1 PDGs for a whole program are also called system-dependence graphs [26].

rity guarantees for legacy applications without requiring annota-
tions or other modifications.

• Enforcement of security policies does not prevent development or
testing. Because the program code does not mention or depend
on PIDGIN policies, the policies do not prevent compilation or
execution. This allows developers to balance development of new
functionality and maintenance of security policies.

• PIDGIN enables regression testing of information security guar-
antees. PIDGIN can be incorporated into a build process to warn
developers if recent code changes violate a security policy that
previously held. This includes information-flow properties that
traditional test cases can not easily detect.

These benefits stand in contrast to existing techniques such as
security-type systems (e.g., [58], Jif [41] and FlowCaml [49]) and
existing PDG-based approaches to security (e.g., JOANA [21]).

In security-typed languages, global security policies are broken
into many pieces and expressed via annotations throughout the pro-
gram. This is problematic for at least three reasons. First, it is dif-
ficult to determine from these annotations how sensitive informa-
tion is handled by the whole system, particularly in the presence
of declassification [48]. Second, changing the security policy may
require modifying many annotations. Third, supporting legacy ap-
plications using these techniques is often infeasible, as they require
significant annotations or modifications to applications.

Dynamic or hybrid information-flow enforcement mechanisms
(e.g., [3, 4, 10, 27, 31, 53]) are sometimes able to specify security
policies separate from code, but interfere with the deployment of
systems: they must be used during testing in order to ensure that
enforcement does not conflict with important functionality.

Taint analysis tools (e.g., [11, 15, 32, 55, 56, 61]) are inevitably
unsound because they do not account for information flow through
control channels, and often do not support expressive application-
specific policies. One of the most recent, FlowDroid [2], works
with a pre-defined (i.e., not application-specific) set of sources
and sinks and does not support sanitization, declassification, or
access control policies. Because PIDGIN supports more expressive
policies, we detect 159 of the 163 (=98%) vulnerabilities in the
SecuriBench Micro [36] 1.08 test suite compared to Flowdroid’s
117 (=72%).

Pre-defined policies (such as policies that might be enforced
on all Android apps) can capture many security requirements of
broad classes of applications. However, applications handle dif-
ferent types of sensitive information (e.g., bank account informa-
tion, health records, school records, etc.) and what constitutes cor-
rect handling of this information differs between applications. Pre-
defined policies cannot express these application-specific security
requirements.

Previous PDG-based information security tools (e.g., [21, 22])
have many of the same issues as security-typed languages. For all
but the simplest security policies, these tools require program an-
notations to specify policies, with the concomitant issues regarding
legacy applications, modifying security policies, and understanding
the system-wide security guarantees implied by the annotations.

Moreover, these techniques focus almost exclusively on en-
forcement of security guarantees and do not support exploration.

The primary contributions of this work are:
1. The novel insight that PDGs offer a unified approach that en-

ables exploration, specification, and enforcement of security
guarantees.

2. The design of an expressive language for precise, application-
specific security policies, based on queries evaluated against
PDGs.

3. The realization and demonstration of these insights and tech-
niques in an effective and scalable tool.

PIDGIN produces PDGs for Java bytecode and then evaluates
queries against these PDGs, either interactively or in batch mode.
Our techniques are applicable to other languages.2

PIDGIN is both useful and scalable. We have used PIDGIN to
discover diverse information security guarantees in legacy Java ap-
plications, and to specify and enforce information security policies
as part of the development process for two new applications. We
have analyzed programs ranging in size up to 330,000 lines of code
(including library code); even for the largest program, construc-
tion of the PDG (including pointer analysis and dataflow analyses
to improve precision) takes 90 seconds, and checking each of our
policies on the PDG takes less than 14 seconds.

Security guarantees we have established using PIDGIN include:
in a password manager, the master password is not improperly
leaked; in a chat server application, punished users are restricted to
certain kinds of messages; and in a course management system, the
class list is correctly protected by access control checks. Moreover,
we have developed security guarantees based on reported vulner-
abilities in Apache Tomcat, and PIDGIN verifies that the security
guarantees hold after the vulnerability is patched and fail to hold in
earlier versions.

2. PIDGIN By Example
Consider the Guessing Game program presented in Figure 1a. This
program randomly chooses a secret number from 1 to 10, prompts
the user for a guess, and then prints a message indicating whether
the guess was correct.

A program dependence graph (PDG) representation of this pro-
gram is shown in Figure 1b. Shaded nodes are program-counter
nodes, representing the control flow of the program. All other nodes
represent the value of an expression or variable at a certain program
point. There is a single summary node representing the formal argu-
ment to the output function. There are three nodes representing ac-
tual arguments, one for each call to output, and an edge from each
to the formal argument. Edges labeled CD indicate control depen-
dencies and other edges indicate data dependencies. Dashed edges
and clouds show where we have elided parts of the PDG for clarity.
(All other emphasis is for the exposition below. Program-counter
nodes that are not relevant to the discussion have been removed for
simplicity.)

Although Guessing Game is simple, it has interesting security
properties that can be expressed as queries on the PDG.

No cheating! The program should not be able to cheat by choos-
ing a secret value that is deliberately different from the user’s guess.
That is, the choice of the secret should be independent of the user’s
input. This policy holds if the following PIDGINQL query returns
an empty graph:

let input = pgm.returnsOf(‘‘getInput’’) in
let secret = pgm.returnsOf(‘‘getRandom’’) in
pgm.forwardSlice(input) ∩ pgm.backwardSlice(secret)

PIDGINQL is a domain specific graph query language that en-
ables exploration of a program’s information flows, and specifica-
tion of information security policies. Constant pgm, short for pro-
gram, is bound to the PDG of the program. Primitive expressions
(such as forwardSlice) compute a subgraph of the graph to the left
of the dot. Query expression pgm.returnsOf(‘‘getInput’’) evaluates
to the node in the program PDG that represents the value returned
from function getInput (shown in a rectangle in Figure 1b). This
is the user’s input. Similarly, the second line identifies the value re-

2 We have generated PDGs for C/C++ programs by analyzing LLVM bit-
code [30] produced by the clang compiler (http://clang.llvm.org/),
and explored information security in these programs using the same query
language and query evaluation engine. This paper focuses on our Java tool.

http://clang. llvm.org/

1 secret = getRandom(1, 10);
2
3 output(“Guess a number ”+
4 “between 1 and 10”);
5 int guess = getInput();
6
7 bool correctGuess = (secret == guess);
8 if (correctGuess) {
9 output(“Congratulations! ”+

10 guess + “ was right”);
11 } else {
12 output(“Sorry, your guess” +
13 “ was incorrect”);
14 }

(a) Guessing Game program

"Guess a number …"

guess = getInput()

return: getRandom

secret = getRandom...secret == guess

PC1

correctGuess = ..

"Congratulations! " +
guess + " …"

PC2

"Sorry, …" + "was…"

FORMAL: msg

Input from
player

TRUE FALSE

MERGE
MERGE

COPY

CD

COPY

EXPEXP

EXP

return: getInput

COPY
getRandom

COPY

output

ACTUAL: msg

MERGE

ACTUAL: msg

COPY

CD

ACTUAL: msg

COPY

"Congratulations! "

EXP

" was right"

EXP

String.valueOf

"Congratulations! " +
guess

EXP

"Sorry, …" "was…"

EXPEXP

(b) PDG for Guessing Game program

Figure 1: Guessing Game program and simplified PDG

turned from function getRandom as the secret. This node is outlined
with a double circle in the PDG.

Query expression pgm.forwardSlice(input) evaluates to the sub-
graph of the PDG that is reachable by a path starting from the query
variable input. This is the subgraph that depends on the user input,
either via control dependency, data dependency, or some combina-
tion thereof. Similarly, pgm.backwardSlice(secret) is the subgraph
of the PDG that can reach the node representing the secret value.
The entire query evaluates to the intersection of the subgraphs that
depend on the user input and on which the secret depends, i.e., all
paths from the user input to the secret.

For the PDG in Figure 1b, this query evaluates to an empty
subgraph. This means that there are no paths from the input to the
secret, and thus the secret does not depend in any way on user input.

Finding all nodes in the PDG that lie on a path between two
sets of nodes is a common query, and we can define it as a reusable
function in PIDGINQL as follows:

let between(G, from, to) =
G.forwardSlice(from) ∩ G.backwardSlice(to)

This allows us to simplify our query. We can also turn our
PIDGINQL query into a security policy (i.e., a statement of the
security guarantee offered by the program) by asserting that the
result of this query should be an empty graph. This is done in
PIDGINQL by appending “is empty” to the query.

Noninterference Noninterference [18, 47] requires that informa-
tion does not flow from confidential inputs to public outputs. For
our purposes, the secret number (line 1, Figure 1a) is a confidential
input, and output statements (lines 3, 9, 12) are publicly observable.

We can check whether noninterference holds between the secret
and the outputs using a query similar to the one above:

let secret = pgm.returnsOf(‘‘getRandom’’) in
let outputs = pgm.formalsOf(‘‘output’’) in
pgm.between(secret, outputs)

Unlike our previous example the query does not result in an
empty subgraph: there are paths from the secret to the output
(marked in Figure 1b with bold lines). Indeed, this program does
not satisfy noninterference, as the functionality of this program
requires that some information about the secret is released.

From secret to output By characterizing all paths from the secret
to the output we can provide a guarantee about what the program’s
public output may reveal about the secret.

Inspecting the result of the noninterference query above, we
see there are two paths from the secret to the public outputs. (If
there were many paths, we could have isolated one path to exam-
ine, by changing the last line to pgm.shortestPath(secret, outputs).)
Both paths pass through the node for the value of expression
“secret == guess”. This means that the public output depends
on the secret only via the comparison between the secret and the
user’s guess. We can confirm this by removing this node from the
graph and checking whether any paths remain between the secret
and the outputs. This can be expressed in PIDGINQL as:
1 let secret = pgm.returnsOf(‘‘getRandom’’) in
2 let outputs = pgm.formalsOf(‘‘output’’) in
3 let check = pgm.forExpression(‘‘secret == guess’’) in
4 pgm.removeNodes(check).between(secret, outputs)
5 is empty

Expression pgm.forExpression(‘‘secret == guess’’)3 evaluates to
the node for the conditional expression (outlined in Figure 1b with
a dotted line). The fourth line removes this node from the PDG then
computes the subgraph of paths from secret to outputs.

This query results in an empty subgraph, meaning we have de-
scribed all paths from secret to outputs. Thus the program satisfies
the policy: The secret does not influence the output except by com-
parison with the user’s guess.

This is an example of trusted declassification [24] and is a
pattern found in many applications. We capture this with a user-
defined policy function asserting that all flows from srcs to sinks
pass through a node in declassifiers.
let declassifies(G, declassifiers, srcs, sinks) =
G.removeNodes(declassifiers).between(srcs, sinks) is empty

Note that our policy is weaker than noninterference: the output
does depend on the secret. Noninterference is too strong to hold
in many real programs, and weaker, application-specific guaran-

3 For presentation reasons we refer to the specific Java expression
‘‘secret == guess’’. In a more realistic example, a policy would likely re-
fer instead to a function or class, which is less brittle with respect to code
changes. However, the ability to refer to specific expressions allows devel-
opers to precisely specify queries and policies if needed.

tees are common. PDGs often contain enough structure to charac-
terize these (potentially complex) security guarantees, which can
be stated succinctly and intuitively given an expressive language to
describe and restrict permitted information flows.

3. PDGs and Security Guarantees
PIDGIN allows programmers to explore a program’s informa-
tion flows and to express and enforce security policies that re-
strict permitted information flows. We achieve this using program-
dependence graphs (PDGs) [16] to explicitly represent the data and
control dependencies within a program. PIDGIN’s PDGs represent
control and data dependencies within a whole program. Annota-
tions and meta-information encoded in PIDGIN PDGs enable pre-
cise and useful queries and security policies. In this section, we
describe the structure of PIDGIN’s PDGs and the different kinds of
security guarantees that can be obtained from them.

3.1 Structure of PIDGIN PDGs
There are several kinds of nodes in PIDGIN PDGs. Expression
nodes represent the value of an expression, variable, or heap lo-
cation at a program point. Program-counter nodes represent the
control flow of a program, and can be thought of as boolean ex-
pressions that are true exactly when program execution is at the
program point represented by the node. In addition, procedure sum-
mary nodes facilitate the interprocedural construction of the PDG
by summarizing a procedure’s entry point, arguments, return value,
etc. Finally, merge nodes represent merging from different control
flow branches, similar to the use of phi nodes in static single assign-
ment form [13]. Nodes also contain metadata, such as the position
in the source code of the expression a node represents.

PIDGIN PDGs are context sensitive, object sensitive, and field
sensitive. They are flow sensitive for local variables and flow insen-
sitive for heap locations.

Edges of the PDG indicate data and control dependencies be-
tween nodes. To improve precision and enable more complex
queries, edges in PIDGIN PDGs have labels that indicate how the
target node of the edge depends on the value represented by the
source node of the edge. Examples of these edge labels can be seen
in Figure 1b. COPY indicates that the value represented by the tar-
get is a copy of the source. EXP indicates that the target is the result
of some computation involving the source. Edges labeled MERGE
are used for all edges whose target is a merge or summary node.

Label CD indicates a control dependency from a program-
counter node to an expression node. An expression is control de-
pendent on a program-counter node if it is evaluated only when
control flow reaches the corresponding program point. An edge
labeled TRUE or FALSE from an expression node to a program-
counter node indicates that control flow depends on the boolean
value represented by the expression node.

3.2 Security Guarantees from PDGs
As Section 2 demonstrated, paths in a PDG can correspond to
information flows in a program, and PIDGIN allows developers to
discover, specify, and enforce security guarantees.

Information security guarantees are application specific, since
what is regarded as sensitive information and what is regarded as
correct handling of that information varies greatly between appli-
cations. The query language PIDGINQL (described in Section 4)
provides several convenient ways for developers to indicate sources
and sinks, such as queries that select the values returned from a par-
ticular function. The ability for PIDGINQL to specify relevant parts
of the graph means that the program does not require annotations
for security policies. PIDGIN can be used to describe many com-
plex policies. We next describe several kinds of security guarantees
that developers can express using PIDGINQL.

Noninterference The absence of a path in a PDG from a source to
a sink indicates that noninterference holds between the source and
the sink. This result was proved formally by Wasserrab et al. [59].
As seen in Section 2, this is equivalent to the PIDGINQL query
pgm.between(source, sink) evaluating to an empty graph.

Noninterference is a strong guarantee, and many applications
that handle sensitive information will not satisfy it: the query
pgm.between(source,sink) will result in a non-empty graph. For
example, an authentication module doesn’t satisfy noninterfer-
ence because it needs to reveal some information about passwords
(specifically, whether a user’s guess matches the password).

Even when noninterference does not hold, developers need as-
surance that the program handles sensitive information correctly.
For example, a developer may want the result of the authentication
module to depend on the password only via an equality test with the
guess. In the remainder of this section, we describe security guar-
antees that are weaker than noninterference and can be expressed
as queries on PDGs.

No explicit flows A coarse-grained notion of information-flow
control considers only explicit information flows and ignores im-
plicit information flows [14]. This is also known as taint tracking
and corresponds to considering only data dependencies and ignor-
ing control dependencies.

Although arbitrary information may flow due to control depen-
dencies, it can be useful and important to show that there are no ex-
plicit information flows from sensitive sources to dangerous sinks.
Indeed, the prevalence of taint-tracking mechanisms (e.g., Perl’s
taint mode, and numerous systems [2, 32, 56, 61]) show that it is in-
tuitive and appealing for developers to consider just explicit flows.
Moreover, tracking only explicit flows leads to fewer false positives
(albeit at the cost of more false negatives) [15, 29].

Restricting attention to data dependencies is straightforward
with a PDG. Specifically, if all paths from sensitive sources to
sensitive sinks have at least one edge labeled CD (i.e., a control
dependency from a program-counter node to an expression node),
then there are no explicit flows from the source to the sink. This
can be expressed by the following PIDGINQL policy function:
let noExplicitFlows(sources, sinks) =

pgm.removeEdges(pgm.selectEdges(CD))
.between(sources, sinks) is empty

Expression pgm.removeEdges(pgm.selectEdges(CD)) selects all
edges labeled CD in the PDG and removes them from the graph.
Using this graph, expression between(sources, sinks) finds the sub-
graph containing all paths between sources and sinks. If this results
in an empty graph the policy holds, and there are no explicit flows
from the sources to the sinks.

Often a program intentionally contains explicit flows (e.g., a
program that prints the last four digits of a credit card number).
To obtain guarantees in this case, a more precise policy is needed.

Describe all information flows In general, a developer can spec-
ify a security policy by describing all permitted paths from sensitive
sources to dangerous sinks. This is because paths in the PDG cor-
respond to information flows in the program. Using the query lan-
guage, the developer can enumerate the ways in which information
is permitted to flow. If, after removing paths corresponding to these
permitted information flows, only an empty graph remains then all
information flows in the program are permitted, and the program
satisfies the security policy. The “no explicit flows” example can
be viewed in this light (i.e., all paths from a source to a sink must
involve a control dependency), but more expressive characteriza-
tions of paths are often necessary, useful, and interesting.

For example, consider a program which takes a (secret) credit
card number and prints the last four digits. This is an intentional
explicit flow, though most taint analysis frameworks would mark it

1 if (checkPassword(pwd))
2 if (user.isAdmin())
3 output(getSecret());

(a) Access control program
RETURN:

checkPassword

PC1

PC2

TRUE

RETURN: isAdmin TRUE

FORMAL:
msg

COPY
CD

outputACTUAL: msg
MERGE

RETURN: getSecret

(b) Relevant fragment of PDG

Figure 2: Access control example

as a security violation. The following policy requires that all paths
from the credit card number to the output go through the return
value of method lastFour.

let ccNum = ... in
let output = pgm.formalsOf(‘‘output’’) in
let lastFourRet = pgm.returnsOf(‘‘lastFour’’) in
pgm.declassifies(lastFourRet, ccNum, output)

Recall that pgm.declassifies(lastFourRet, ccNum, output) (seen in
Section 2) removes the nodes lastFourRet from pgm, and asserts
that in the resulting graph there are no paths from ccNum to output.

This policy treats method lastFour as a trusted declassi-
fier [24]: information is allowed to flow from ccNum to output
provided it goes through the return value of lastFour because
lastFour is trusted to release only limited information about credit
card numbers. Determining whether lastFour is in fact trustwor-
thy is beyond the scope of this work. Trustworthiness of lastFour
could, for example, be achieved through a code review, or through
formal verification of its correctness. Nonetheless, this PIDGINQL
policy provides a strong security guarantee, and reduces the ques-
tion of correct information flow in the entire program to the trust-
worthiness of one specific method.

Describe conditions for information-flow In some cases it is
important to know not just the flows from sensitive sources to
dangerous sinks, but also under what conditions these flows occur.
Using PDGs, we can extract this information by considering control
dependencies of nodes within a path. This is difficult for most
existing information-flow analyses, as the conditions under which
a flow occurs are not properties of the paths from sources to sinks.

For example, consider the program in Figure 2a, which is a sim-
ple model of an access control check guarding information flow.
Secret information is output at line 3, but only if the user pro-
vided the correct password (line 1) and the user is the administrator
(line 2). If we look at the relevant fragment of the PDG for this pro-
gram (Figure 2b) we see that there is a single path from a sensitive
source (the double-circled node for the return from the getSecret
function) to a dangerous sink (the bold node representing the for-
mal argument to output). By examining the control dependencies
for one of the nodes on this path, we can determine that this flow
happens only if both access control checks pass. All paths from the
source to the sink are control dependent on both “checkPassword”
and “isAdmin” returning true. We can describe this with:
1 let sec = pgm.returnsOf(‘‘getSecret’’) in
2 let out = pgm.formalsOf(‘‘output’’) in
3 let isPassRet = pgm.returnsOf(‘‘checkPassword’’) in
4 let isAdRet = pgm.returnsOf(‘‘isAdmin’’) in
5 let guards = pgm.findPCNodes(isPassRet, TRUE) ∩
6 pgm.findPCNodes(isAdRet, TRUE) in
7 pgm.removeControlDeps(guards).between(sec, out) is empty

Query Q ::= F Q | E
Policy P ::= F P | E is empty | p(A0, . . . , An)

Function F ::= let f (x0, . . . , xn) = E ;
Definition | let p(x0, . . . , xn) = E is empty;

Expression E ::= pgm | E .PE | E1 ∪ E2 | E1 ∩ E2

| let x = E1 in E2 | x | f (A0, . . . , An)

Argument A ::= E | EdgeType | NodeType
| JavaExpression | ProcedureName

Primitive PE ::= forwardSlice(E) | backwardSlice(E)
Expression | shortestPath(E1, E2)

| removeNodes(E) | removeEdges(E)
| selectEdges(EdgeType)
| selectNodes(NodeType)
| forExpression(JavaExpression)
| forProcedure(ProcedureName)
| findPCNodes(E , EdgeType)
| removeControlDeps(E)

EdgeType ::= CD | EXP | TRUE | FALSE | . . .
NodeType ::= PC | ENTRYPC | FORMAL | . . .

Figure 3: PIDGINQL grammar

Lines 1 and 2 find the appropriate PDG nodes for the secret and
output functions, respectively. The expressions on lines 5 and 6
finds any program counter nodes in the PDG corresponding to pro-
gram points that can be reached only when checkPassword and
isAdmin return true. The primitive removeControlDeps(E) removes
nodes from the graph that are control dependent on any program
counter node in E. The graph pgm.removeControlDeps(guards) is,
intuitively, the result of removing all nodes that are reachable only
when the password is correct and the user is the admin. The follow-
ing policy function captures this pattern:
let flowAccessControlled(G, checks, srcs, sinks) =

G.removeControlDeps(checks).between(srcs, sinks)
is empty

In the example above, access control checks protect information
flow from a source to a sink. A simpler pattern is when access con-
trol checks guard execution of a sensitive operation. The following
policy function asserts that execution of sensitiveOps (representing
sensitive operations, such as calls to a dangerous procedure) occurs
only when access control checks represented by checks succeed:
let accessControlled(G, checks, sensitiveOps) =

G.removeControlDeps(checks) ∩ sensitiveOps
is empty

4. Querying PDGs with PidginQL
We have developed PIDGINQL, a domain-specific language that al-
lows a developer to explore information flows in a program, and to
specify security policies that restrict information flows. PIDGINQL
is a graph query language, specialized to express readable and in-
tuitive queries relevant to information security. The grammar for
PIDGINQL is shown in Figure 3. The grammar includes let state-
ments, functions, graph composition operations, and primitives that
are useful for expressing information security conditions.

Queries and expressions A query Q is a sequence of function
definitions followed by a single expression. Expressions evaluate to
graphs. There is a single constant expression, pgm (short for pro-
gram), which always evaluates to the original program dependence
graph for the program under consideration. A primitive expression

PE is a function on a graph: E0.PE evaluates expression E0 to
a graph G0 and then the primitive expression returns a subgraph
of G0, computed according to the semantics of the specified op-
eration (which we describe in more detail below and throughout
the paper). Expression E1∪E2 evaluates E1 and E2 to graphs G1

and G2 respectively and returns the union of G1 and G2. Simi-
larly, E1∩E2 evaluates both E1 and E2 and returns the intersection
of the results. Expressions also include let bindings, variable uses,
and invocations of user-defined functions.

Policies A policy P is a sequence of function definitions followed
either by an assertion that expression E evaluates to an empty
graph (E is empty) or an invocation of a user-defined policy func-
tion (which will assert that some expression evaluates to an empty
graph). As discussed in Sections 2 and 3, if a query, Q, considers
all information flows from sources to sinks, and removes only per-
mitted flows, and Q results in an empty graph when evaluated on a
program’s PDG, the program contains only permitted information
flows. Evaluating a policy results in an error if the assertion fails,
i.e., if the query does not evaluate to an empty graph.

Queries are typically used when interactively exploring infor-
mation flows, since non-empty query results can be examined and
further explored to understand the information flows present in a
program and discover security violations. Policies are useful for en-
forcement and regression testing (i.e., determining whether a mod-
ified program still satisfies a security guarantee).

Primitive expressions PIDGINQL contains several primitive op-
erations for exploring information flows in programs and specify-
ing restrictions on permitted information flows. These are described
throughout the paper; due to space constraints we only briefly de-
scribe some here.

Expression forwardSlice is useful for selecting everything in-
fluenced by sensitive sources and backwardSlice for selecting
everything that influences critical sinks. Both forwardSlice and
backwardSlice may take another argument (not shown in the gram-
mar) that controls the depth of the slice, for example to select
immediate successors of a node.

For example, expression E0.forwardSlice(E1) evaluates the
subexpressions to graphs G0 and G1 and computes the subgraph
of G0 that is reachable from any node in G1. We improve the pre-
cision of slicing by including only nodes of G0 that are reachable
from a node in G1 by a feasible path (i.e., a path where method
calls and returns are appropriately matched). The call graph we use
to construct the PDG is necessarily a finite approximation of the
actual control flow of the program. Removing infeasible paths from
slices, an example of CFL-reachability [44], greatly improves the
precision of queries and policies, as it helps mitigate the impreci-
sion that arises from this finite approximation.4

Expression E0.shortestPath(E1,E2) is useful during exploration
to find a simple (feasible) path remaining after executing a query.
This helps identify vulnerabilities or missing security conditions.

Expression E0.findPCNodes(E1,EdgeType) is used to find pro-
gram counter nodes in E0 that correspond to control-flow deci-
sions based on expressions in E1. Edge type EdgeType must
be either TRUE or FALSE. If E0 and E1 evaluate to graphs
G0 and G1 respectively, E0.findPCNodes(E1, TRUE) evaluates
to the program counter nodes in G0 that are reachable only
by a TRUE edge from some expression node in G1. That is,
the program point corresponding to a program counter node in
E0.findPCNodes(E1, TRUE) will be reached only if some expres-
sion in G1 evaluates to true.

4 Faster, but less precise primitive expressions (not shown in the grammar)
are also provided that compute slices that may include infeasible paths.

Expression E0.removeControlDeps(E1) can be used in com-
bination with findPCNodes, for removing nodes that are con-
trol dependent on a boolean expression. In Section 3, we use
removeControlDeps to define access control policies.

Any primitive expression that takes a ProcedureName or
JavaExpression as an argument will raise an error if it evaluates to
an empty graph. This ensures that API changes, such as changing
a method name, will trigger an error until a corresponding change
is made to the PIDGINQL policy.

User-defined functions PIDGINQL functions are defined with
let f(x0, . . . , xn) = E and let p(x0, . . . , xn) = E is empty. Func-
tion definitions are either graph functions (which will evaluate to
a graph) or policy functions (which assert that some expression
evaluates to an empty graph).5 Functions are invoked with syntax
f(A0, . . . , An). We also support A0.f(A1, . . . , An) as alternative
syntax to allow user-defined functions to be easily composed with
other operations.

Examples of user-defined functions in Sections 2 and 3 are
between, formalsOf, and returnsOf. For example, function entriesOf,
which finds entry program-counter nodes in G for procedures
matching ProcedureName , is defined as:
let entries(G, ProcedureName) =

G.forProcedure(ProcedureName).selectNodes(ENTRYPC)

User-defined functions are a powerful tool for building complex
queries and policies. We have identified useful (non-primitive) op-
erations and defined them as functions. In our query evaluation tool,
these definitions are included by default, providing a rich library of
useful functions, including between, formalsOf, returnsOf, entriesOf,
declassifies, noExplicitFlows, and flowAccessControlled.

5. Implementation
PIDGIN has two distinct components. The first component analyzes
Java bytecode, including JDK (up to 1.6) and library code, and pro-
duces PDGs. The second component evaluates queries against a
PDG, and can be used either interactively or in “batch mode.” In-
teractive mode displays results of queries in a variety of formats
and is useful to explore information flows in a program, for exam-
ple, to explore security guarantees in legacy programs or to find
information flows that violate a given policy. The ability to interac-
tively query a program to discover and describe information flows
is a novel contribution of this work. Batch mode simply evaluates
PIDGINQL queries and policies and is useful for checking that a
program enforces a previously specified policy (e.g., as part of a
nightly build process).

PDG construction Our implementation, which uses the WALA
framework,6 is approximately 22,700 lines of code. Of this, 7,500
lines implement a custom multi-threaded pointer analysis engine.
A scalable pointer analysis is key to the scalability of PIDGIN; the
multi-threaded engine significantly outperforms WALA’s pointer
analysis. The remaining code implements the PDG construction,
including various dataflow analyses to improve the precision of the
PDG. For example, we determine the precise types of exceptions
that can be thrown, improving control-flow analysis, and therefore
enabling more precise enforcement of security policies.

We construct a PDG for all code reachable from a specified
main method via an interprocedural dataflow analysis. We use an
object-sensitive pointer analysis (a 2-type-sensitive analysis with a
1-type-sensitive heap [50]). We use additional precision for Java

5 For presentation purposes, we syntactically distinguish graph and policy
functions; in the implementation using a policy function where a graph
function is expected will result in an evaluation error not a parsing error.
6 http://wala.sf.net/

Pointer Analysis PDG Construction
Program Size (LoC) Time (s) Nodes Edges Time (s) Nodes Edges

Mean SD Mean SD
CMS 161,597 2.0 0.2 333,741 2,557,316 13.1 0.1 1,812,263 3,540,271
FreeCS 102,842 0.8 0.1 135,489 545,853 6.0 0.1 742,860 1,407,576
UPM 333,896 5.7 1.1 637,348 17,255,214 24.8 0.1 3,544,271 7,016,244
Tomcat 160,432 6.6 0.2 508,227 11,474,544 14.3 0.1 1,973,632 4,048,266
PTax 65,165 1.1 0.2 92,527 2,088,865 2.8 0.2 280,633 539,253

Figure 4: Program sizes and analysis results

standard library container classes (3-type-sensitive with a 2-type-
sensitive heap) and string builders (1-full-object-sensitive [50]) to
reduce false dependencies in these commonly used classes. The
PDG construction analysis is context sensitive, object sensitive, and
field sensitive. It is flow insensitive for heap locations, but achieves
a form of flow sensitivity for local variables due to WALA’s static
single assignment representation [13].

We handle all Java language features except reflection. The
PDG captures all control and data dependencies, but not depen-
dencies due to concurrent races. Because our analysis is flow-
insensitive for heap locations, all reads of a given heap location
depend on all writes to that location, which soundly approximates
concurrent access to shared data.

Like other practical Java pointer analyses (e.g., WALA’s pointer
analysis and Doop [8]), in order to scale we use a single abstract
object to represent all java.lang.Strings. For increased precision
in the PDG, we (soundly) treat methods on String objects and ob-
jects of immutable primitive wrapper classes (java.lang.Integer,
etc.) as primitive operations by replacing method calls with edges
describing their effects. This is key to PIDGIN’s scalability and
precision. Different Strings contain different information, and
must be distinguished to enforce realistic security policies. Treat-
ing Strings like primitive values in the PDG provides sufficient
precision while permitting a scalable pointer analysis. In addition,
we provide analysis result signatures for some native methods. For
native methods without signatures, we assume that the return val-
ues of the methods depend only on the arguments and the receiver,
and that the methods have no heap side-effects. These assumptions
are potential sources of unsoundness in our analysis.

PidginQL Query Engine We implemented a custom query en-
gine for PIDGINQL that evaluates queries against PDGs. Although
PIDGINQL could be implemented using an existing graph query
language and engine (such as Cypher7 or Gremlin [25]), we used a
custom engine for flexibility and fast prototyping.

The query evaluator is 8,700 lines of Java code. It implements
call-by-need semantics and caches subquery results. Call-by-need
reduces the graph expressions that must be evaluated. Caching
improves performance, particularly when used interactively, since
subqueries are often reused. When exploring information flows
with PIDGIN, a user typically submits a sequence of similar queries.

6. Case Studies
In this section we present the results of applying PIDGIN. For three
legacy applications there was no predefined specification and we
used PIDGIN to explore the information flows and discover precise
security policies that these applications satisfy. These were a web-
based Course Management System (CMS); and two open-source
applications, Free Chat-Server (FreeCS) and Universal Password
Manager (UPM). For a fourth legacy application, the Apache Tom-
cat web server, we developed policies based on reported vulnerabil-
ities and confirmed that the policies hold after patching, but fail on

7 http://neo4j.com/developer/cypher-query-language/

Program Policy Time (s) Policy
Mean SD LoC

CMS B1 5.5 0.06 3
B2 3.9 0.06 5

FreeCS C1 1.3 0.03 10
C2 4.2 0.13 31

UPM D1 11.7 0.12 7
D2 13.3 0.13 12

Tomcat E1 < 0.1 < 0.01 4
E2 5.9 0.12 10
E3 0.1 < 0.01 3
E4 5.9 0.03 4

PTax F1 0.4 < 0.01 4
F2 1.3 0.01 14

Figure 5: Policy evaluation times

the unpatched version. We used our system to support simultane-
ous application and policy development for a small tax application
we wrote ourselves, PTax. The diversity and specificity of these
policies demonstrate the flexibility and expressivity of PIDGINQL.

In addition we apply PIDGIN to the SecuriBench Micro bench-
mark [36], and in Appendices A and B we discuss using PIDGIN
both to explore security guarantees of a legacy application and to
specify and enforce policies during development of an application.

6.1 Analysis Performance
The first column of Figure 4 presents the lines of code analyzed,
i.e., lines reachable from the specified main method, including JDK
1.6 and library code. For each Tomcat vulnerability, we wrote a test
harness that exercises the component(s) containing the vulnerabil-
ity, and ran PIDGIN on the harness. PIDGIN thus analyzes all code
reachable from the test harness, which does not include all Tomcat
components. Figure 4 shows results for only the largest harness.

Figure 4 also presents the performance of the pointer and PDG
construction analyses, giving the mean and standard deviation (SD)
of ten runs. Analyses were performed on a 16 vCPU Amazon EC2
instance using Intel Xeon E5-2666 processors with 30GB of RAM.

Figure 5 summarizes policy evaluation times for all policies
discussed in this section, based on ten evaluations. Policy times are
reported for a cold cache (i.e., with no previously cached results
for subqueries). Each policy evaluates in under 14 seconds. The
last column in Figure 5 gives the number of lines for each policy.

6.2 Course Management System (CMS)
CMS [7] is a J2EE web application for course management that
has been used at Cornell University since 2005. We used a version
of CMS that replaces the relational database backend with an in-
memory object database. This version has previously been used to
test performance in a distributed computing system [33]. CMS uses

the model/view/controller design pattern. We examined the security
of the model and controller logic; views simply display the results.
Policy B1. Only CMS administrators can send a message to all
CMS users.

This is a typical access control policy, ensuring that the function
used to send messages to all users, is called only when the current
user is an administrator.
let addNotice = pgm.entriesOf(”addNotice”) in
let isAdmin = pgm.returnsOf(”isCMSAdmin”) in
let isAdminTrue = pgm.findPCNodes(isAdmin,TRUE) in
pgm.accessControlled(isAdminTrue, addNotice)

Policy B2. Only users with correct privileges can add students to
a course.

This five line policy is similar to Policy B1.

6.3 Free Chat-Server
Free Chat-Server is an open-source Java chat server that has
been downloaded nearly 100,000 times.8 Once the chat server has
started, users can send messages, maintain friend lists, create, join
and manage group chat sessions, etc. Administrators can ban, kick,
and punish misbehaving users.
Policy C1. Only superusers can send broadcast messages.

We used PIDGIN to confirm that the ability to send messages
to all users is available only to users with the right ROLE_GOD. This
can be described with an access control policy similar to others
previously presented. However, while exploring the information
flows present in this program, we realized that our initial definition
of what constituted a “broadcast message” was imprecise. PIDGIN
enabled us to quickly find this apparent violation of the policy and
refine our security policy appropriately.
Policy C2. Punished users may perform limited actions.

Misbehaving users can be disciplined by setting a punished flag
in the object representing the user. In the PDG for Free Chat-Server,
there are 357 sites where actions can be performed, all of which are
invocations of the same method. We developed a PIDGINQL pol-
icy that precisely describes which actions a punished user may per-
form by using PIDGIN to interactively explore information flows,
focusing on calls to the “perform action” method that were not ac-
cess controlled by the punished flag. The final policy is 31 lines of
PIDGINQL, the largest we have developed.

6.4 Universal Password Manager (UPM)
UPM is an open-source password manager. Users store encrypted
account and password information in the application’s database and
decrypt them by entering a single master password. It has been
downloaded over 90,000 times.9

Policy D1. The user’s master password entry does not explicitly
flow to the GUI, console, or network except through trusted cryp-
tographic operations.

When we consider only the data dependencies in the program,
the user’s master password entry flows to public outputs only via
the encryption and decryption operations in the trusted Bouncy
Castle cryptography library.
Policy D2. The user’s master password entry does not influence
the GUI, console, or network inappropriately.

When we consider control dependencies, we find that the user’s
master password entry may influence public outputs, but only in
appropriate ways (through trusted declassifiers). For example, an
incorrect or invalid password triggers an error dialog box, and our
policy accounts for this flow.

8 http://sourceforge.net/projects/freecs/
9 http://upm.sourceforge.net/

6.5 Apache Tomcat
Apache Tomcat10 is a popular open source web server. Tomcat
provides application developers with Java Servlet and Java Server
Pages APIs, an HTTP server, and tools and management interfaces
for server administrators. For several reported Tomcat vulnerabil-
ities from the CVE database,11 we developed PIDGINQL policies
and confirmed that the policies fail to hold on vulnerable versions
of Tomcat, and successfully hold on patched versions.

Note that the use of PIDGIN on a test harness provides stronger
guarantees than a simple test case. Most importantly, PIDGIN can
test information-flow properties (e.g., noninterference) which are
not testable by a single test case. In addition, a single PIDGINQL
policy on a test harness provides guarantees on many possible
executions. For the Tomcat test harnesses, we effectively test all
possible parameters of server requests, because PIDGINQL policies
and the PDG construction do not examine specific string values.
Policy E1. CVE-2010-1157: The BASIC and DIGEST authentica-
tion HTTP headers do not leak the local host name or IP address
of the machine running Tomcat.

The PIDGINQL policy asserts that there are no paths from the
sources of the host name and IP address to the authentication
headers. This is a standard noninterference policy and ensures the
completeness of the fix.
Policy E2. CVE-2011-0013: Data from web applications must be
properly sanitized before being displayed in the HTML Manager.

It should not be possible for client web applications to run arbi-
trary scripts in the HTML Manager, a component for use by Tom-
cat administrators. This vulnerability arose because some data from
client web applications was not properly sanitized. The PIDGINQL
policy identifies the sanitization functions and asserts that all data
from client applications that is displayed by the HTML manager
passes through a sanitization function. Note that the policy does
not ensure the proper implementation of the sanitization functions,
but identifies them as trusted code that needs to be inspected.
Policy E3. CVE-2011-2204: A user’s password should not flow
into an exception which gets written to the log file.

The PIDGINQL policy is a noninterference policy asserting that
the password does not influence the arguments to any exception
method. This includes the creation of exceptions that leaked the
password prior to the fix for CVE-2011-2204, but also ensures that
there were no similar leaks elsewhere in the code.
Policy E4. CVE-2014-0033: Session IDs provided in the URL
should be ignored when URL rewriting is disabled.

The session ID from the request should not be used if URL
rewriting is explicitly disabled. The PIDGINQL policy is a flow
access controlled policy asserting that, if URL rewriting is disabled,
then the session ID in the URL does not influence the session to
which a request is associated.

6.6 PTax
PTax is a toy tax computation application. PTax supports multi-
ple users who login with a username and password and input their
tax information. This sensitive information is stored in a file to be
accessed by the user at a later time, provided the user supplies
the correct password. Before development, we defined a number
of PIDGINQL policies we expected to hold. As development pro-
gressed, the policies were iteratively refined to reflect implementa-
tion choices (e.g., names of methods, signature of the authentica-
tion module), although the intent of the policies remained the same.
Policy F1. Public outputs do not depend on a user’s password,
unless it has been cryptographically hashed.

10 http://tomcat.apache.org/
11 http://cve.mitre.org/

let passwords = pgm.returnsOf(‘‘getPassword’’) in
let outputs = pgm.formalsOf(‘‘writeToStorage’’) ∪

pgm.formalsOf(‘‘print’’) in
let hashFormals = pgm.formalsOf(‘‘computeHash’’) in
pgm.declassifies(hashFormals, passwords, outputs)

This is a trusted-declassification policy. The declassifies function
ensures that the only information flow from the user’s password to
public outputs are through the argument to the hash function.
Policy F2. Tax information is encrypted before being written to
disk and decrypted only when the password is entered correctly.

Policy F2 is a combined declassification policy and access con-
trol policy, whose exact statement depends on the specification of
the userLogin method.

6.7 Micro-benchmark Results

Test Group Detected False Positives
Aliasing 12/12 0
Arrays 9/9 5
Basic 63/63 0
Collections 14/14 5
Data Structures 5/5 0
Factories 3/3 0
Inter 16/16 0
Pred 5/5 2
Reflection 1/4 0
Sanitizers 3/4 0
Session 3/3 1
Strong Update 1/1 2
Total 159/163 15

Figure 6: SecuriBench Micro results

To compare with other Java analysis tools, we ran PIDGIN on
the SecuriBench Micro [36] 1.08 suite of 123 small test cases. We
develop PIDGIN policies for each test and detect 159 out of a total
of 163 vulnerabilities. We do not detect vulnerabilities due to re-
flection. We also miss an incorrectly written sanitization function,
though our policy marks it as a trusted declassifier, and thus indi-
cates it should be inspected or otherwise verified.

For many tests the policy is a simply noninterference, requir-
ing that sensitive values from an HTTP request do not affect public
output. For some tests there is an allowed implicit flow, and we
developed appropriate policies. Some tests require domain-specific
policies (e.g., the Sanitizers tests required application-specific de-
classification policies).

False positives were caused by known limitations of our tool, in-
cluding imprecise reasoning about individual array elements, dead
code elimination that required arithmetic reasoning (Pred), and
flow-insensitive tracking of heap locations (Strong Update).

7. Related Work
PDGs for security In a series of papers, Snelting and Hammer
(and collaborators) argue for the use of PDGs for information-flow
control, due to the precision and scalability of PDGs. They have de-
veloped JOANA [21], an object sensitive and context sensitive tool
for checking noninterference in Java bytecode [22], shown their
techniques to be sound [59], and considered information flow in
concurrent programs [17]. They also use path conditions to improve
precision by ruling out impossible paths [54]. Hammer et al. [23]
consider enforcement of a form of where declassification [48].

The key differences between our work and previous work using
PDGs for information-flow control is that (1) our query language
allows for expressive, precise, application-specific policies that are
separate from code, whereas JOANA requires program annotations
and supports a limited class of policies; (2) we seek to use the PDG

to enable exploration of security guarantees of programs in addition
to enforcement of explicitly specified security guarantees; and (3)
PIDGIN scales to larger programs. The largest reported use of
JOANA is on a program with about 63,000 lines of code (excluding
the JDK 1.4 library, which is approximately 100k lines of code
total) for a scalability test where no security policy is specified. For
this example JOANA is only able to generate a context-insensitive
PDG and this takes about a day [20, 52].

Program dependence graphs were introduced by Ferrante et al.
[16], along with an algorithm to produce them. PDGs were pre-
sented as an ideal data structure for certain intra-procedural op-
timizations. Program slicing for an interprocedural extension to
PDGs is introduced by Horwitz et al. [26] and made more precise
by Reps [44] using CFL reachability. Program slicing is useful for
describing security guarantees and is built into PIDGINQL as prim-
itive expressions forwardSlice and backwardSlice. Reps and Rosay
[45] define program chopping, of which the PIDGINQL function
between, defined in Section 2, is an example. Abadi et al. [1] de-
velop a core calculus of dependency. Although they do not directly
consider program dependence graphs, they show that program slic-
ing and information flow type systems can be translated to this cal-
culus. Cartwright and Felleisen [9] give a denotational semantics
to PDGs derived from the semantics of the original program. Berg-
eretti and Carré [6] use structures similar to PDGs to automatically
find bugs in while programs and increase program understanding.

Yamaguchi et al. [60] use intraprocedural PDGs together with
abstract syntax trees to detect vulnerabilities in C code. Vulnerabil-
ities (e.g., buffer overflows) are identified using graph traversals,
which are similar to some of our graph queries. Unlike PIDGIN, the
vulnerabilities their tool found were each contained within a single
function, and their tool does not support whole program security
policies. Furthermore, they consider only properties of a single pro-
gram execution rather than application-specific information-flow
properties such as those described in Sections 3 and 6. As common
with bug-finding tools, their tool does not attempt to guarantee the
absence of vulnerabilities even if none are found.

Kashyap and Hardekopf [28] use PDGs to infer security sig-
natures describing how information flows within small (under 5k
lines) JavaScript browser add-ons. These signatures can then by
used by an auditor to decide whether an add-on should be accepted.
PIDGIN is similarly focused on increasing program understanding.
Unlike our work, where policies can be application specific, they
use a predefined set of sources and sinks. In addition to distin-
guishing control and data dependencies, their PDG edges contain
annotations to indicate which edges may be more likely to carry rel-
evant information. These additional annotations could also benefit
PIDGIN, for example to help prioritize potential policy violations
to present to the user.

Legacy applications and policy inference PIDGIN supports dis-
covering information security guarantees for legacy applications.
Rocha et al. [46] present a framework that allows declassification
policies to be specified for legacy applications. Policies are separate
from code and enforcement of policies is checked using expres-
sion graphs, which, like PDGs, capture data and control dependen-
cies. Policies are specified as graphs that describe which expression
graphs can be declassified. Unlike the framework of Rocha et al.,
PIDGIN supports a rich class of policies and allows developers to
explore the information flows in an application, and thus provides
support for deciding what policy is appropriate for an application.
By contrast, Rocha et al. only discuss declassification and do not
consider how developers produce policies. Moreover, we have im-
plemented our approach for Java bytecode; to the best of our knowl-
edge, Rocha et al. do not implement their framework, nor consider
how to extend to a full-fledged programming language.

Other work seeks to infer security policies for existing pro-
grams. Vaughan and Chong [57] use a data-flow analysis to infer
expressive information security policies that describe what sensi-
tive information may be revealed by a program. King et al. [29],
Pottier and Conchon [43], Smith and Thober [51], and the Jif
compiler [40, 41] all perform various forms of type inference for
security-typed languages. Mastroeni and Banerjee [39] use refine-
ment to derive a program’s semantic declassification policy. We do
not currently support automatic inference of security policies from
a PDG. We instead provide the developer with tools and abstrac-
tions to help them explore the information flows in a program.

Several analyses infer explicit information flows (e.g., [34, 35,
37]). While efficient and practical, these analyses do not track
implicit flows and may be inadequate in settings where strong
information security is required. As described in Section 3, PIDGIN
also supports exploration of explicit information flows, and policies
for explicit information flows.

Enforcement of expressive policies Many tools and techniques
seek to enforce expressive and strong information security policies.
Security-type systems (e.g., [41, 49, 58]) are the main technique
used to enforce such policies. The survey by Sabelfeld and My-
ers [47] provides an overview of these security policies and en-
forcement techniques. More recently, Banerjee et al. [5] combine
security-types with an expressive logic for describing a program’s
declassification policy, and Nanevski et al. [42] use an expressive
type-theoretic verification framework to specify and enforce rich
information-flow properties. The security guarantees we consider
in Section 3.2 are related to the security policies considered in these
previous works. The absence of paths from sources to sinks corre-
sponds to noninterference. Requiring all paths to go through certain
nodes (such as the formal argument of a sanitization function) is a
form of trusted declassification (e.g. [24, 38]). Reasoning about the
conditions under which potentially dangerous information flows
occur is similar to reasoning about when declassification is permit-
ted [12, 48]. Restricting attention to only explicit information flows
is equivalent to a static taint analysis (e.g., [2, 19, 34, 35, 37, 56]).

8. Conclusion
Program dependence graphs precisely capture the information-
flows within programs. We present the novel insight that be-
cause individual paths within a PDG correspond to particular
information-flows within a program, queries on PDGs offer a uni-
fied approach for the exploration, specification, and enforcement
of security guarantees.

Using this insight, we have designed and implemented PIDGIN.
PIDGIN combines program dependence graphs (PDGs) with an ex-
pressive query language. By using the query language to describe
paths in the PDG, developers can understand how information
flows within a program and express precise, application-specific
security guarantees including noninterference, trusted declassifica-
tion, and access-controlled information flows.

PIDGIN is a practical tool. We have used PIDGIN to explore the
information security of legacy applications, to specify and enforce
information security during development, and to extract policies
from known vulnerabilities. PIDGIN scales to Java applications
with over 300k lines. Our case studies demonstrate that PIDGIN
can express (and verify enforcement of) interesting application-
specific security policies, some of which are difficult or impossible
to express using existing tools and techniques.

Acknowledgments
We thank Eddie Kohler, Andrew Myers, the Programming Lan-
guages Group at Harvard, and the reviewers for their helpful com-
ments. This work is supported by the National Science Foundation

under Grant No. 1054172 and Grant No. 1421770 and by the Air
Force Research Laboratory. The Lincoln Laboratory portion of this
work was sponsored by the Department of the Air Force under Air
Force Contract FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the authors and are not
necessarily endorsed by the United States Government.

References
[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus

of dependency. In Proc. 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 1999.

[2] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel. FlowDroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps. In Proc. ACM Conf. on Program Language Design and
Implementation, 2014.

[3] T. H. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In Proc. ACM SIGPLAN Fourth Workshop on Program-
ming Languages and Analysis for Security, 2009.

[4] T. H. Austin and C. Flanagan. Multiple facets for dynamic information
flow. In Proc. 39th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2012.

[5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive declassi-
fication policies and modular static enforcement. In Proc. 2008 IEEE
Symposium on Security and Privacy, 2008.

[6] J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow
analysis of while-programs. ACM Trans. on Programming Languages
and Systems, 1985.

[7] C. Botev, H. Chao, T. Chao, Y. Cheng, R. Doyle, S. Grankin, J. Guar-
ino, S. Guha, P.-C. Lee, D. Perry, C. Re, I. Rifkin, T. Yuan, D. Ab-
dullah, K. Carpenter, D. Gries, D. Kozen, A. Myers, D. Schwartz, and
J. Shanmugasundaram. Supporting workflow in a course management
system. In Proc. 36th SIGCSE technical symposium on Computer sci-
ence education, 2005.

[8] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification
of sophisticated points-to analyses. In Proc. 24th ACM SIGPLAN
conference on Object oriented programming, systems, languages, and
applications, New York, NY, USA, 2009. ACM.

[9] R. Cartwright and M. Felleisen. The semantics of program depen-
dence. In Proc. ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1989.

[10] D. Chandra and M. Franz. Fine-grained information flow analysis and
enforcement in a java virtual machine. In Proc. 23rd Annual Computer
Security Applications Conference, 2007.

[11] E. Chin and D. Wagner. Efficient character-level taint tracking for
Java. In Proc. 2009 ACM workshop on Secure web services, 2009.

[12] S. Chong and A. C. Myers. Security policies for downgrading. In Proc.
11th ACM conference on Computer and communications security,
2004.

[13] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. on Programming Languages and
Systems, 1991.

[14] D. E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 1976.

[15] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth. TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones. In Proc. Usenix
Conference on Operating Systems Design and Implementation, 2010.

[16] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. on Programming
Languages and Systems, 1987.

[17] D. Giffhorn and G. Snelting. A new algorithm for low-deterministic
security. International Journal of Information Security, 2014.

[18] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. IEEE Symposium on Security and Privacy, 1982.

[19] M. I. Gordon, D. Kim, J. Perkins, L. Gilham, N. Nguyen, and M. Ri-
nard. Information flow analysis of android applications in droidsafe.
In Proc. 2015 Network and Distributed System Security Symposium,
2015.

[20] J. Graf. Speeding up context-, object- and field-sensitive SDG gener-
ation. In Proc. of the 10th IEEE Working Conference on Source Code
Analysis and Manipulation, 2010.

[21] C. Hammer. Information Flow Control for Java - A Comprehensive
Approach based on Path Conditions in Dependence Graphs. PhD
thesis, Universität Karlsruhe (TH), Fak. f. Informatik, 2009.

[22] C. Hammer and G. Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program depen-
dence graphs. International Journal of Information Security, 2009.

[23] C. Hammer, J. Krinke, and F. Nodes. Intransitive noninterference in
dependence graphs. In 2nd International Symposium on Leveraging
Application of Formal Methods, Verification and Validation, 2006.

[24] B. Hicks, D. King, P. McDaniel, and M. Hicks. Trusted declassifi-
cation: high-level policy for a security-typed language. In Proc. ACM
SIGPLAN Workshop on Programming Languages and Analysis for Se-
curity, 2006.

[25] F. Holzschuher and R. Peinl. Performance of graph query languages:
Comparison of Cypher, Gremlin and native access in Neo4j. In Proc.
Joint EDBT/ICDT 2013 Workshops, 2013.

[26] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Not., 1988.

[27] C. Hritcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett. All
your IFCException are belong to us. In Proc. 2013 IEEE Symposium
on Security and Privacy, 2013.

[28] V. Kashyap and B. Hardekopf. Security signature inference for
javascript-based browser addons. In Proc. 2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, 2014.

[29] D. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit flows: Can’t live
with ’em, can’t live without ’em. In Proc. International Conference
on Information Systems Security, 2008.

[30] C. Lattner and V. Adve. LLVM: A compilation framework for life-
long program analysis & transformation. In Proc. 2004 International
Symposium on Code Generation and Optimization, 2004.

[31] G. Le Guernic, A. Banerjee, T. Jensen, and D. A. Schmidt. Automata-
based confidentiality monitoring. Proc. 11th Annual Asian Computing
Science Conference, 2006.

[32] D. Li. Dynamic tainting for deployed Java programs. In Proc. ACM
international conference companion on Object oriented programming
systems languages and applications, 2010.

[33] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers.
Fabric: a platform for secure distributed computation and storage.
In Proc. ACM SIGOPS Symposium on Operating systems principles,
2009.

[34] Y. Liu and A. Milanova. Static analysis for inference of explicit
information flow. In Proc. 8th ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, 2008.

[35] Y. Liu and A. Milanova. Practical static analysis for inference of
security-related program properties. In Proc. IEEE 17th International
Conference on Program Comprehension, 2009.

[36] B. Livshits. Securibench Micro, 2006. http://suif.stanford.
edu/~livshits/work/securibench-micro/.

[37] B. Livshits, A. V. Nori, S. K. Rajamani, and A. Banerjee. Merlin:
Specification inference for explicit information flow problems. In
Proc. ACM SIGPLAN 2009 Conference on Programming Language
Design and Implementation, 2009.

[38] H. Mantel and D. Sands. Controlled Declassification based on Intran-
sitive Noninterference. In Proc. 2nd ASIAN Symposium on Program-
ming Languages and Systems, 2004.

[39] I. Mastroeni and A. Banerjee. Modelling declassification policies us-
ing abstract domain completeness. Mathematical Structures in Com-
puter Science, 2011.

[40] A. C. Myers. Mostly-Static Decentralized Information Flow Control.
PhD thesis, MIT, 1999.

[41] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, N. Nystrom,
D. Zhang, O. Arden, J. Liu, and K. Vikram. Jif: Java information flow.
Software release. Located at http://www.cs.cornell.edu/jif,
2001–2014.

[42] A. Nanevski, A. Banerjee, and D. Garg. Dependent type theory for
verification of information flow and access control policies. ACM
Trans. on Programming Languages and Systems, 2013.

[43] F. Pottier and S. Conchon. Information flow inference for free. In
Proc. 5th ACM SIGPLAN International Conference on Functional
Programming, 2000.

[44] T. Reps. Program analysis via graph reachability. In Proc. 1997
International Symposium on Logic Programming, 1997.

[45] T. Reps and G. Rosay. Precise interprocedural chopping. In Proc. 3rd
ACM SIGSOFT symposium on Foundations of software engineering,
1995.

[46] B. Rocha, S. Bandhakavi, J. den Hartog, W. Winsborough, and
S. Etalle. Towards static flow-based declassification for legacy and
untrusted programs. In Proc. 2010 IEEE Symposium on Security and
Privacy, 2010.

[47] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on Selected Areas in Communications, 2003.

[48] A. Sabelfeld and D. Sands. Dimensions and principles of declassifica-
tion. In Proc. 18th IEEE Computer Security Foundations Workshop,
2005.

[49] V. Simonet. The Flow Caml System: documentation and user’s man-
ual. Technical report, Institut National de Recherche en Informatique
et en Automatique (INRIA), 2003.

[50] Y. Smaragdakis, M. Bravenboer, and O. Lhoták. Pick your contexts
well: understanding object-sensitivity. In Proc. 38th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, 2011.

[51] S. F. Smith and M. Thober. Improving usability of information flow
security in Java. In Proc. 2007 Workshop on Programming Languages
and Analysis for Security, 2007.

[52] G. Snelting, D. Giffhorn, J. Graf, C. Hammer, M. Hecker, M. Mohr,
and D. Wasserrab. Checking probabilistic noninterference using
JOANA. Information Technology, 2015.

[53] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible dynamic
information flow control in Haskell. In Proc. 4th ACM Symposium on
Haskell, 2011.

[54] M. Taghdiri, G. Snelting, and C. Sinz. Information flow analysis
via path condition refinement. In International Workshop on Formal
Aspects of Security and Trust, 2010.

[55] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman.
TAJ: Effective taint analysis of web applications. In Proc. ACM
SIGPLAN 2009 Conference on Programming Language Design and
Implementation, 2009.

[56] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. AN-
DROMEDA: accurate and scalable security analysis of web applica-
tions. In Fundamental Approaches to Software Engineering, 2013.

[57] J. A. Vaughan and S. Chong. Inference of expressive declassification
policies. In Proc. 2011 IEEE Symposium on Security and Privacy,
2011.

[58] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure
flow analysis. Journal of Computer Security, 1996.

[59] D. Wasserrab, D. Lohner, and G. Snelting. On PDG-based noninterfer-
ence and its modular proof. In Proc. ACM SIGPLAN Fourth Workshop
on Programming Languages and Analysis for Security, 2009.

[60] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discov-
ering vulnerabilities with code property graphs. In Proc. 2014 IEEE
Symposium on Security and Privacy, 2014.

[61] D. Y. Zhu, J. Jung, D. Song, T. Kohno, and D. Wetherall. TaintEraser:
Protecting sensitive data leaks using application-level taint tracking.
ACM Operating Systems Review, 2011.

http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/
http://www.cs.cornell.edu/jif

let sources = pgm.returnsOf(‘‘askUserForPassword’’) in
let sinks = pgm.formalsOf(‘‘javax.swing∗’’)

∪ pgm.formalsOf(‘‘sun.swing’’)
∪ pgm.formalsOf(‘‘PrintStream.print∗’’)
∪ pgm.formalsOf(‘‘HTTPTransport∗’’) in

let declassifiers =
// Trusted Bouncy Castle functions
pgm.forProcedure(‘‘CBCBlockCipher.decryptBlock’’)
∪ pgm.forProcedure(‘‘AESEngine.encryptBlock’’)
∪ pgm.forProcedure(‘‘AESEngine.decryptBlock’’)
∪ pgm.forProcedure(‘‘AESEngine.packBlock’’) in

pgm.explicit.declassifies(declassifiers, sources, sinks)

Figure 7: PIDGINQL policy expressing Policy D1

A. Using PIDGIN for legacy code
The interactivity of PIDGIN was essential to understanding the
security guarantees provided by legacy case-study programs and
writing queries that describe these guarantees. We illustrate the
interactive query and policy generation process by describing how
we developed Policy D1 for Universal Password Manager (UPM).

Find sources and sinks UPM protects a user’s passwords by
encrypting them with a single master password. We investigated
confidentiality guarantees regarding the master password that is
entered by the user and used to decrypt the database containing
the user’s password. Inspecting the application code, we found
that the master password is returned from the askUserForPassword

method. These return values are sources.
By regarding the return values of askUserForPassword as sensi-

tive sources, we are trusting the implementation to correctly handle
data from the input: a Java Swing widget. The method is 11 lines
of code and uses standard Java Swing API calls. We also trust the
Swing library. This is a common way to use PIDGIN: to reduce
trust in an entire application to trust in well-designed and well-
maintained libraries and a small amount of application code.

We identified three different places that data may leave the
application: 1) the GUI (via the Swing API); 2) the console; and 3)
the network (via a custom java.net.HTTPTransport class). Formal
arguments to methods in these three locations are sinks.

Try simple queries Unsurprisingly, most of the interesting work
is done by the application after asking for a password and be-
fore presenting or sending results and there are paths between the
sources and sinks. We first narrowed our focus to data dependen-
cies, and tried a simple policy, pgm.noExplicitFlows(sources, sinks).

Investigate counterexamples This policy failed, revealing that
there are some paths via only data dependencies. We wanted a
strong policy that describes how data dependencies allow informa-
tion about the master password to leak from the application. To be-
gin this process, we found a counterexample using the shortestPath
query, pgm.explicit.shortestPath(sources, sinks), where the expres-
sion pgm.explicit returns the data dependencies in pgm.

The resulting path converts the password to bytes and uses those
bytes in a decryption function in the Bouncy Castle cryptography
library to decrypt the password database. Bouncy Castle (https:
//www.bouncycastle.org/) is one of the most widely used open
source Java cryptography libraries and is clearly trusted by the
UPM code. Therefore we can trust the password to not leak (except
via cryptographic computations) once it enters the Bouncy Castle
decryption and encryption functions.

Create a PIDGINQL policy The final policy is shown in Fig-
ure 7. Whereas the informal description of Policy D1 is vague, the
PIDGINQL policy is strong, precise, checkable, and clarifies when
flows from the master password to public output are appropriate.

B. Using PIDGIN for new development
Often new development begins with an incomplete and impre-
cise security specification that evolves as development progresses.
PIDGIN policies are flexible and, because they are not embedded
in the program text, can be easily modified along with the informal
security specification and the code itself. They can also be used for
regression testing as the code changes.

We illustrate this process by describing the use of PIDGIN
throughout the development of a toy conference management sys-
tem, PChair. Access control policies in conference management
systems can be intricate and complex. In the end there were four-
teen separate PIDGIN security policies for PChair. Most of these
policies restrict access to sensitive data (author names, reviews,
etc.) and ensure proper permissions for sensitive operations (e.g.,
accepting a paper).

Define an informal policy. Before beginning development we
wrote down the policies we desired informally. For example, one
policy was initially: Only authors of a paper, reviewers of a paper,
and PC members can see a paper’s reviews.

Implement initial version of the program and PIDGIN policy.
PChair uses role-based access control. We used simple func-
tions to check whether the current user has a particular role, and
then referred to these functions in our policies. Thus, our poli-
cies rely on the correctness of these functions, which were de-
liberately designed to be easy to understand. This implementa-
tion simplified PIDGINQL policy specification; most policies used
flowAccessControlled to check whether the correct roles were held
on every path where sensitive information was accessed.

Update policies when the specification is modified. As the func-
tionality of the application evolved, the security policies also
evolved. For example, we added a system administrator role. Sys-
tem administrators have superuser-like abilities, and we modified
our informal specifications and PIDGIN policies accordingly. Be-
cause PIDGIN policies are not spread out throughout the code
base (as, e.g., security-type annotations) updating the policies was
straightforward, and accomplished easily.

Regression testing security policies. We automated regression
testing, checking policies before accepting a commit to our source
repository. Timely notification of the security policy failure allowed
us to easily identify and fix several violations. An interesting failure
happened for Policy 1, shown below.
Policy 1. A paper’s acceptance status can be released only to
an author of the paper after the notification deadline, or to PC
members without conflicts.

The PIDGIN policy ensures that all flows from return values of
isAccepted to the client are protected by the correct access check.
... // output = errors or responses sent to the client
... // define deadline, role, and conflict checks
let isAccepted = pgm.returnsOf(‘‘isAccepted’’) in
let check = (pgm.findPCNodes(isAuthorOf, TRUE)

∩ pgm.findPCNodes(notifyDeadlinePast, TRUE))
∪ (pgm.findPCNodes(isPC, TRUE)

∩ pgm.findPCNodes(hasConflict, FALSE)) in
pgm.flowAccessControlled(check, isAccepted, output)

During development, we discovered that this policy was not en-
forced. After the notification deadline, only accepted papers can be
updated. If a user tries to update a rejected paper or update a paper
before the deadline, an error message is displayed. However, which
error message was displayed revealed information about whether
or not the paper had been accepted. This implicit information flow
leaked information about the paper’s acceptance. PIDGIN provided
enough information to identify and fix this subtle violation.

https://www.bouncycastle.org/
https://www.bouncycastle.org/

	Introduction
	PIDGIN By Example
	PDGs and Security Guarantees
	Structure of PIDGIN PDGs
	Security Guarantees from PDGs

	Querying PDGs with PidginQL
	Implementation
	Case Studies
	Analysis Performance
	Course Management System (CMS)
	Free Chat-Server
	Universal Password Manager (UPM)
	Apache Tomcat
	PTax
	Micro-benchmark Results

	Related Work
	Conclusion
	Using Pidgin for legacy code
	Using Pidgin for new development

