
Weird Machines as Insecure Compilation
Jennifer Paykin, Eric Mertens, Mark Tullsen, Luke Maurer, Benoı̂t Razet, and Scott Moore

{jpaykin,scott}@galois.com Galois, Inc.

Computer security is distinguished from other computer sci-
ence disciplines by its adversarial nature—computer security
studies how systems behave while subject to attack. A result
of this adversarial focus is that exploits serve an important role
in security research: an exploit witnesses the insecurity of a
system by causing it to behave inappropriately.

However, the mere existence of an exploit fails to answer
many important questions about the system under consid-
eration: How severe is the vulnerability? How readily can
the vulnerability be repurposed by hackers to attack other
systems? Can the vulnerability be patched? How effective
is a proposed mitigation? Without a systematic approach to
understanding exploits, it is difficult to evaluate the importance
of any particular vulnerability or to generalize lessons learned
to improve security more broadly.

In the exploit community, many practitioners describe ex-
ploit development as an exercise in “programming a weird
machine.” A weird machine is the latent computational ma-
chine exposed by a vulnerable program that can be repurposed
by an attacker to achieve their goals [1, 2]. A particularly
evocative example of programming a weird machine is return-
oriented programming, where attackers exploit a program by
overwriting the stack with a sequence of return addresses that
invoke fragments of the original binary to achieve a desired
effect [3]. Despite the intuitive appeal of weird machines, it
has proven challenging to provide a formal definition that
can be consistently applied to a variety of systems and
vulnerabilities [4, 5].

Dullien [5] defines weird behavior as the difference between
two state machines—an intended finite state machine (IFSM)
corresponding to the model that the programmer has in her
head when writing the program and an implemented finite
state machine that attempts to realize the IFSM. A weird state
is a state in the implemented finite state machine that does
not correspond to a state in the intended one, and the weird
machine is the collection of computations reachable from a
weird state. Using this formalism, Dullien is able to compare
the exploitability of two implementations of a simple program.

This formalism requires that the relationship between the
intended and actual state machines is formalized, but does
not give clear guidelines for what this relationship must look
like. Furthermore, since both the intended and implemented
state machines are program-specific, it is difficult to draw con-

This material is based upon work supported by the United States Air Force
and DARPA under Contract No. FA8750-15-C-0124. Any opinions, findings
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the United States Air
Force and DARPA.

clusions about the generalizability of exploits or mitigations
beyond the system at hand.

Arguing for the development of new formalisms of
weird machines, Bratus and Shubina [2] identify abstraction-
breaking as their core phenomenon. Inspired by Abadi’s [6]
connection between programming language abstractions and
secure compilation, we propose formalizing weird machines as
counterexamples to secure compilation between a source pro-
gram (written P) and its compilation (written JPK), witnessed
by a target-level attacker context A. Following Abate et al. [7],
we define secure compilation via property-preservation, rather
than full abstraction, explicitly modeling a program’s behavior
(written Behav (P)).

An exploit is an adversarial context that causes a compiled
program to behave differently than it could in the source-
language semantics. Intuitively, such a behavior must violate
some abstraction of the source-level program. More formally:

Definition (Exploit). An exploit of a vulnerable source pro-
gram V is an attacker context A from an attack class A if
Behav (C[V]) 6= Behav (A[JVK]) for every non-oblivious1 C.

ExploitA(V) ,

{
A ∈ A

∣∣∣∣∣ ∀ C . ¬oblivious(C) ⇒
Behav (C[V]) 6= Behav (A[JVK])

}
Given a vulnerable program, the set of possible exploits

determines what behaviors are available to the attacker:

Definition (Weird Machine). The weird machine of a vulner-
able source program V for an attack class A is the collection
of behaviors arising from exploits of V.

WMA(V) ,
{

Behav (A[JVK])
∣∣∣ A ∈ ExploitA(V)

}
Using these definitions, we model a number of weird ma-

chines and exploits including return-oriented programming [3],
data-oriented programming [8], speculative execution vulner-
abilities [9, 10], and timing side-channels. Furthermore, we
show that our approach generalizes Dullien’s state machine
formalization. Finally, we show that exploits are exactly the
contexts that violate robust properties of behaviors [7].

Formalizing weird machines in terms of secure compilation
provides a clear framework for understanding exploit classes
like these and, as evidenced by Abadi et al’s previous work
on address space layout randomization [11, 12], allows us to
reason about the underlying causes of exploits and how they
might be mitigated.

1A context is oblivious if its behavior does not depend on the program it
is linked with: oblivious(C) , ∀V,V’ . Behav (C[V]) = Behav C[V’].



REFERENCES

[1] S. Bratus, M. Locasto, M. Patterson, L. Sassaman,
and A. Shubina, “Exploit Programming: from Buffer
Overflows to Weird Machines and Theory of
Computation,” USENIX, Dec. 2011. [Online]. Available:
http://langsec.org/papers/Bratus.pdf

[2] S. Bratus and A. Shubina, “Exploitation as code reuse:
On the need of formalization,” Information Technology,
vol. 50, no. 2, 2017.

[3] H. Shacham, “The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86),” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS), 2007.

[4] J. Vanegue, “The weird machines in proof-carrying
code,” in Proceedings of the 2014 IEEE Security and
Privacy Workshops (LangSec), 2014.

[5] T. Dullien, “Weird machines, exploitability, and provable
unexploitability,” IEEE Transactions on Emerging Topics
in Computing, pp. 1–1, 2018.

[6] M. Abadi, Protection in Programming-Language Trans-
lations. Springer Berlin Heidelberg, 1999, pp. 19–34.

[7] C. Abate, R. Blanco, D. Garg, C. Hritcu, M. Patrignani,

and J. Thibault, “Journey beyond full abstraction: Explor-
ing robust property preservation for secure compilation,”
in Proceedings of the 32nd IEEE Computer Security
Foundations Symposium (CSF), 2019.

[8] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K.
Iyer, “Non-control-data attacks are realistic threats,” in
Proceedings of the 14th USENIX Security Symposium,
2005.

[9] J. Wampler, I. Martiny, and E. Wustrow, “Exspectre: Hid-
ing malware in speculative execution,” in Proceedings of
the Network and Distributed System Security Symposium
(NDSS), 2019.

[10] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and
T. Verwaest, “Spectre is here to stay: An analysis of
side-channels and speculative execution,” arXiv preprint
arXiv:1902.05178, 2019.

[11] M. Abadi and G. D. Plotkin, “On protection by layout
randomization,” ACM Transactions on Information Sys-
tems Security, vol. 15, no. 2, Jul. 2012.

[12] M. Abadi and J. Planul, “On layout randomization for
arrays and functions,” in Principles of Security and Trust
(POST), 2013.


