HARVARD UNIVERSITY
Graduate School of Arts and Sciences

A
S

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the

Harvard John A. Paulson School of Engineering and Applied Sciences

have examined a dissertation entitled:

“Software Contracts for Security”

presented by: Scott David Moore

candidate for the degree of Doctor of Philosophy and here by
certify that it is worthy of acceptance.

Signature

Typed name: Professor S. Chong \\A

Signature

Typed name: Professor E. Kohler

Signature

sl
"

Typed name: Professor J. Mickens

Date: April 25 2016

Software Contracts for Security

A DISSERTATION PRESENTED
BY
ScoTT DAVID MOORE
TO
THE HARVARD JOHN A. PAULSON SCHOOL OF ENGINEERING AND APPLIED SCIENCES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DocCTOR OF PHILOSOPHY
IN THE SUBJECT OF
COMPUTER SCIENCE

HARVARD UNIVERSITY
CAMBRIDGE, MASSACHUSETTS
MAY 2016

©2016 — ScoTT DAVID MOORE
ALL RIGHTS RESERVED.

Dissertation advisor: Professor Stephen Chong Scott David Moore

Software Contracts for Security

ABSTRACT

Component-based software engineering facilitates the design of complex systems by subdivid-
ing the programming task into separate components that interact via clearly defined interfaces.
A component-based system is correct only when each component satisfies its specification and
the interactions between different components satisfy their respective interfaces. “Design by
Contract” is a programming methodology that enforces these requirements by attaching exe-
cutable specifications to components. These contracts monitor the system’s execution and inter-
fere when a specification would be violated.

Designing a program this way gives assurance that the program is correct. It eliminates de-
fensive programming by separating code that validates the correct use of a component from the
component’s implementation. It also simplifies debugging by localizing program errors within
the component that violated its specification. However, existing work on software contracts fo-
cuses almost exclusively on contracts for functional correctness. This dissertation argues that

Higher-order software contracts are an effective mechanism to specify and enforce
composable, easy-to-understand security properties.
Whereas traditional software contracts describe what a component requires from its clients and
provides in return, software contracts for security enforce limits on the contexts in which com-
ponents can be used.

The first part of this dissertation shows how existing software contracts can be combined with
language restrictions to write and enforce declarative security specifications. Based on this de-
sign, I develop a secure shell scripting language. The second part introduces authorization con-
tracts, a new type of software contract that can implement a wide range of commonly used se-

curity mechanisms without requiring language modifications.

ii

1 Introduction

Contents

1
2 Behavioral Contacts 6
2.1 Contractsbyexample L 7
2.2 AModel for Contracts e e 13
2.3 Correct Blame and Complete Monitoring 17
2.4 Related Work e 25
3 Capability Contracts 28
3.1 Capability-safety and Complete Monitoring 30
3.2 From Patternsto Contracts 35
3.3 Related Work e 52
4 A Secure Shell Scripting Language 54
4.1 Design e 58
4.2 Implementation L 73
4.3 Evaluation e 84
4.4 Related Work e 92
5 Authorization Contracts 95
5.1 Authority Environments L L 98
5.2 A Framework for AccessControl 105
5.3 Putting Authorization Contractsto Work 128
5.4 Casestudies e e 139
5.5 Related Work e 146
6 Conclusion 149
References 151

iv

To JENN, WHO MAKES MY HEART LEAP AND ALL THINGS POSSIBLE.

Acknowledgments

First, I must thank Stephen Chong, my advisor. He gave me support, helped me grow, and made
this work possible. His encouragement and guidance has made me a better researcher and a
better writer. His constant kindess is an inspiration.

I'would like to thank my committee members Eddie Kohler and James Mickens. Their valuable
comments pushed me to refine my thinking and better communicate my ideas.

The work in this dissertation could not have been completed without the help of my co-authors
Aslan Askarov, Christos Dimoulas, Robby Findler, Matthew Flatt, and Dan King. Their hard
work, insight, and companionship made the work a delight. I am especially grateful to Aslan and
Christos, who, as well as collaborators, were great mentors.

I would also like to thank the many other people I have had the pleasure to work with over
the years: Vikram Adve, Joshua Cranmer, David Darais, Brian DeVries, Will Dietz, Ashish
Gehani, Andrew Johnson, Heiko Mantel, Gregory Malecha, Greg Morrisett, Lucas Waye, Natara-
jan Shankar, and Meera Sridhar. In particular, I would like to thank Kevin Hamlen, Gopal Gupta,
and the rest of the faculty at the University of Texas at Dallas, who stirred my passion for research
and supported me as an enthusiastic young student. Finally, I thank the inhabitants of the pro-
gramming languages lab in MD309. They have made the past six years a wonderful combination
of work, learning, and fun.

My family instilled the love of learning that set me on this path. Mom, Dad, Mark, Lilly,

Andrew, Peter, and Gizem: thank you for always being there for me, even though you didn’t

vi

always know what I was doing or why it was taking so long. Your support made this possible,
and coming home was always a welcome respite. Jenn: you've been my steadfast companion, my

partner in crime, and my inspiration; thank you for the years past and all the years to come.

vii

Introduction

To simplify the monumental task of writing large computer systems, programmers decompose
their code into components (variously called modules, functions, objects or units) that each han-
dle a small part of the whole system. Modular decomposition allows the programmer to treat
separate concerns of the whole system independently. Furthermore, it facilitates program reuse
because different programs that share common sub-tasks may share components.

However, these benefits do not come free. For a system composed of many different parts to
be correct, the interactions between different components must satisfy the assumptions that each
component author made about the rest of the system. This has two implications: first, it suggests
that components must come with formal or informal specifications for how they should be used,

and second, it requires defensive programming to detect when an assumption is violated.

Software contracts, first popularized by the Eiffel programming langauge [74], are a program-
ming language feature for writing and enforcing component specifications. Contracts are written
in the same language as the components they describe and are checked during program execu-
tion to detect violations. If a violation occurs, the contract system signals an error which blames
the component that did not satisfy its specification. This blame information greatly simplifies
the task of debugging a large program comprising many different components.

Executable software contracts are available for a wide variety of programming languages in-
cluding Ada [7, 68], C [96], C++ [88], Java [55, 59, 65], C# [8], Racket [37] and JavaScript [57].
These contract systems allow programmers to attach behavioral contracts to program compo-
nents such as classes, methods, or functions [12]. A behavioral contract specifies functional
properties of a component’s behavior: properties relating the inputs and initial state to the out-
puts and final state of an operation on the component [47].

For example, attaching a behavioral contract to a function that writes nicely formatted log
messages can ensure that its callers will invoke it with the appropriate arguments: a path des-
ignating a log file and a string with the message to be logged. However, such a contract says
nothing about security concerns such as who may write log messages to which file or in what
context.

In a simple program written for a single user, these questions may have uninteresting answers—
there is a single log file chosen by the user and it is always safe to write to it. But as programs
become more complex, so do these security concerns. Consider the famous article “The Con-
fused Deputy” [46], in which Hardy recounts how confusion over who is doing what and why
leads to security vulnerabilities in a time-sharing system. One of the programs running on the
system was a compiler, which was deputized to perform two tasks: to compile programs for users
and to record how much those users should be billed for the service. The billing information was

stored in a special file called (SYSX)BILL. A particularly clever user found out about this file

and instructed the compiler to use it for logging debugging information. The compiler happily
compiled the user’s program for free by over-writing all of the billing information.

To protect against this kind of misuse, a software contract must associate information with
each component within the program that describes how it must be used and, before performing
a sensitive action, must check that the context in which the action takes place is appropriate. But
this is less simple than it seems, even for this simple example of controlling access to a file.

In existing efforts to use contracts to enforce security properties, programmers must explic-
itly record the information required to enforce a security property by adding code to contracts
throughout the program that imperatively updates and checks additional “ghost” data associ-
ated with the security property [65]. Doing this correctly is challenging, so a number of tools
have been developed to automatically generate annotations for particular classes of security poli-
cies [86, 105, 121]. However, because the contracts generated by these tools expose the details
of a particular encoding strategy, they obscure the high-level security policy they are meant to
enforce. This makes them difficult to understand and thus diminishes the benefits of software
contracts as a form of documentation and an aid to debugging.

This dissertation presents an alternative approach to enforcing security properties using soft-
ware contracts, based on higher-order software contracts [37]. In a language with higher-order
features such as objects or closures, behavioral contracts must be able to specify functional prop-
erties of operations on these higher-order values. To address this issue, nominal contract systems
for object-oriented languages such as Eiffel [74], Java [65], and C# [8] associate each object with
a single contract that is determined by the object’s class. Higher-order software contracts, in-
troduced by Findler and Felleisen [37], go further by allowing behavioral contracts to attach
additional contracts to higher-order values as they flow between components. The additional
expressive power of higher-order software contracts means that like other properties of software

components, security properties can be cleanly expressed as part of a component’s interface.

Moreover:

Higher-order software contracts are an effective mechanism to specify and enforce
composable, easy-to-understand security properties.

To validate this claim, I present two novel approaches for writing software contracts that ad-
dress security concerns. The first approach extends languages designed to support capabilty-
based security with support for higher-order software contracts. In a capability-safe program-
ming language, a component is permitted to access a sensitive resource (usually a program value)
only if it posseses a corresponding “capability” By carefully controlling which components have
access to capabilities, a wide range of access control abstractions can be implemented [79]. Be-
cause these languages achieve security by restricting how and when values can be accessed by dif-
ferent components, higher-order contracts are a natural way to formalize these policies. More-
over, contracts can replace ad-hoc design patterns that implement security abstractions with
declarative, easy-to-understand security policies. To better express some design patterns, I in-
troduce bounded-polymorphic contracts, which extend existing behavioral contract systems with
contracts that behave similarly to bounded-polymorphic types.

While effective for enforcing security in a capability-safe programming language, existing be-
havioral contracts are ill-suited to enforcing security in less-restrictive languages where security
depends not just on what values a component uses, but also in which context the component ex-
ecutes. Security contracts for these languages must express properties about the context in which
particular operations are invoked. The second approach to software contracts for security pre-
sented by this dissertation introduces context contracts and authorization contracts, which allow
programmers to develop custom-tailored security mechanisms for components.

A key insight in the development of authorization contracts is that components receive au-
thority in different ways that have direct analogs in the scoping of variable environments: by

inheriting authority from their surrounding execution context or by capturing authority where

the component was created. Context contracts can cooperate with other contracts executing
in their dynamic extent, and also capture information about their current context. Authoriza-
tion contracts combine context contracts with a novel authorization logic to define a domain-
specific language for writing contracts for security. This language is expressive enough to encode
awide range of existing language-level security mechanisms including stack inspection [124] and
capability-based security [80]. Furthermore, it allows programmers to develop and use security
mechanisms that compose cleanly and are tailored to the needs of specific components, rather
than enforced centrally by the language implementation.

This dissertation is organized into six chapters. In Chapter 2, I review existing work on higher-
order behavioral contracts, paying particular attention to contracts that prove useful for im-
plementing security policies and to the foundations of reasoning about and validating the cor-
rectness of contract systems. In Chapter 3, I give a brief overview of capability-based security
and show how software contracts can replace many existing design patterns from capability-safe
programming languages. Chapter 4 describes Shill, a secure shell scripting language that com-
bines a restrictive, capability-safe language, software contracts, and a system-level sandbox. Shill
demonstates that the combination of contracts and capabilities results in easy-to-understand,
effective security guarantees. Chapter 5 introduces context contracts and shows how they can be
used to develop authorization contracts that enforce security properties on components. Chap-
ter 6 concludes with some final remarks.

Chapter 3 includes material that was previously published in the paper “Declarative Policies
for Capability Control” [24], which I authored with Christos Dimoulas, Aslan Askarov, and
Stephen Chong. Chapter 4 was previously published as the paper “Shill: A Secure Shell Script-
ing Language” [81], which I authored with Christos Dimoulas, Dan King, and Stephen Chong.
Chapter 5 is the result of an ongoing collaboration with Christos Dimoulas, Robert Bruce Find-

ler, Matthew Flatt, and Stephen Chong.

Behavioral Contacts

Bertrand Meyer’s “Design by Contract” paradigm directs software developers to couple every
component with an enforceable contract that describes its interface [75]. These behavioral con-
tracts describe the invariants and pre- and post-conditions a program must satisfy when using
the component. Higher-order software contracts [37] extend previous implementations of be-
havioral contracts with flexible support for specifying higher-order properties of components.
This chapter provides a brief overview of higher-order behavioral contracts, first presenting
contracts through a number of short examples (Section 2.1) and then describing their imple-

mentation and semantics using a formal model (Section 2.2 and Section 2.3).

(define (string-insert str index txt)
(string-append (substring str 0 index)
txt
(substring str dindex)))

Figure 1: A simple component.

2.1 CONTRACTS BY EXAMPLE

As an example of a very simple component, consider the Racket [38] procedure in Figure 1 that
inserts text into a string at a specified position. The informal specification of this procedure is
that it takes three arguments: a string, an index indicating a position in the string, and another
string to insert. It returns a new string where the first index characters are a prefix of the first
argument, the next sequence of characters are the characters from the third argument, and the
rest of the string is the remainder of the first argument.

This informal specification is precise enough for another programmer to start using this pro-
cedure in their own code:

> (string-insert "hello world" 6 "to the ")

"hello to the world"
Unfortunately, it is very easy for a programmer to misunderstand this specification or make a
simple mistake, perhaps passing arguments in the wrong order:

> (string-insert "hello world" "to the " 6)
substring: contract violation

expected: exact-nonnegative-integer?

given: "to the "

argument position: 3rd

other arguments...:

"hello world"
(C]

(¢ string-insert (-> String Integer String String))
(define (string-insert str index txt)
(string-append (substring str 0 index)
txt
(substring str dindex)))

Figure 2: A type interface for string-insert.

Because the implementation of the component assumed it would be called correctly, the result is
unpredictable. In this case, reversing the arguments eventually causes the substring procedure
to be invoked with inappropriate arguments, resulting in an error. To the client programmer, the
error message is particularly unhelpful because it refers to implementation details of string-
insert that were not part of its specification. Something went wrong, but it is not clear what.

To avoid these kinds of errors, many programming languages have features that allow pro-
grammers to express specifications more formally. A common tool for this purpose is types.
Types are an excellent tool for specifying simple properties about the structure of inputs and
outputs that a component expects. For example, using Typed Racket, a dialect of Racket with
statically checked types [118], we can attach a type to the string-insert procedure, as seen
in Figure 2.

The type annotation (: string-insert (-> String Integer String String))
asserts that string-insert is a procedure that accepts three arguments (a string, an integer,
and a string) and returns a string. Using this formal specification, the language can check that
client programs at least invoke the component with the correct types of arguments, and prevent

obviously wrong programs from compiling:

> (string-insert "hello world" "to the " 6)
Type Checker: type mismatch
expected: Integer
given: String
in: "to the "
Type Checker: type mismatch
expected: String
given: Positive-Byte
in: 6
However, because type systems enforce specifications statically, they must find a careful bal-
ance between supporting properties that are simple enough to reason about without running the
program and more complex properties that force the programmer to structure their code (or
worse, write proofs) to convince the type system of the program’s correctness. As a result, pro-
grammers use types to express some, but not all, of a component’s specifications. Properties that
cannot be expressed in the type system are either ignored, or enforced by the implementation of
the component.
In this case, the type of string-insert does not enforce that the index identifies a location

within the string, so it is possible to call string-insert with arguments that don’t satisfy its

specification:
> (string-insert "a" 2 "b")
substring: ending index 1is out of range
ending index: 2
starting index: 0
valid range: [0, 1]
string: "a"
Here, the type of string-insert failed to capture the requirement that the index repre-
sents a valid position in the first string argument. In Figure 3, we show how the code can be
made robust against this error by explicitly checking for it in the body of the procedure. This

code improves on the previous version because it has predictable behavior when the compo-

nent’s assumptions aren’t met, but it has a few downsides. First, the specification visible to the

(¢ string-insert (-> String Integer String String))
(define (string-insert str index txt)
(unless (and (>= dindex 0) (< dindex (string-length str)))
(raise-argument-error
'string-insert
"Integer 1in range [0, (string-length str)]" 1
str index txt))
(string-append (substring str 0 index)
txt
(substring str -dindex)))

Figure 3: Checking for errors in string-insert.

caller doesn’t communicate precisely what pre-conditions should be met to call the procedure.
Second, the implementation is more complicated than it needs to be because it mixes code for
the component’s functionality with code for validating inputs.

An alternative for specifying and enforcing component specifications is behavioral contracts.
Behavioral contracts allow programmers to attach pre- and post-conditions to component inter-
faces. These pre- and post-conditions are predicates written in the same language as the software
components they govern, and thus can enforce complex, application-specific requirements.

Consider the version of the string-insert procedure in Figure 4. This version comes with
a contract. The define/contract form works like defne, but also attaches a contract to the

newly defined value. In this case, it attaches the contract

(=>1 ([str string?]
[index (str) (integer-in 0 (string-length str))]
[txt string?])
[result string?])

to procedure string-insert. This contract is a dependent function contract contract [25,

37] (non-dependent function contracts are defined using ->). It specifies pre-conditions for

10

(define/contract (string-insert str index txt)
(=>1 ([str string?]
[index (str) (integer-in 0 (string-length str))]
[txt string?])
[result string?])
(string-append (substring str 0 index)
txt
(substring str dindex)))

Figure 4: A contract for string-insert.

string-insertas predicates on the arguments: the first argument must be a string, the second
must be an integer between zero and the length of the string, and the third must also be a string.
The contract is dependent because the contract itself depends on program values, in this case, the
length of the string passed as the first argument. The contract specifies a post-condition for the
function as well: the result must be a string.

The predicates that appear in a contract are not restricted to a predefined set, but instead can
be arbitrary code, or even additional contracts that have been defined by the programmer, as in
the integer-1n contract used by the contract for string-insert. The fact that contracts and
predicates are defined within the language has two ramifications. First, it means that users are
free to enforce whatever properties are important to their programs. Second, it means that users
can define their own predicates and contract combinators (like -, ->1, and integer-in) to
express properties using a domain specific language customized to the task at hand. In this case,
we use arrow combinators to give users a familiar, type-like language for expressing properties
of functions.

This contracted procedure enforces the same restrictions on its use as the earlier version of

the code which contained explicit checks that the arguments were suitable:

11

> (string-insert "a" 2 "b")
string-insert: contract violation
expected: (integer-in 0 1)
given: 2
in: the index argument of
(=>17 ([str string?]
[index (str) (integer-in 0 (string-length str))]
[txt string?])
[result string?])
contract from: (procedure string-insert)
blaming: program
(assuming the contract 1is correct)
at: program:1.0
In addition to cleanly separating the defensive checks required to validate the uses of this code,
using a contract for this purpose has a number of advantages. First, the contract automates
the task of replacing the interface specfication with the code necessary to perform the checks,
and even generates detailed error messages when the contract is violated. Second, the contract
system can carefully track blame for a violation to help in debugging. In the previous example,
the contract blames the incorrect invocation of string-insert. Ifinstead the procedure failed
to meet its specification, the contract would report that string-insert itself was to blame. In
alarge program with many interacting components, this debugging information is invaluable for
quickly identifying the root cause of errors.
Because contracts may impose arbitrary restrictions on components, in general they cannot

be checked immediately. For example, consider the following procedure and function contract:

(define/contract (twice f x)
(-=> (-> 1dnteger? dnteger?) 1integer? 1integer?)
(f (f x)))
This procedure takes as input a function from integers to integers and an integer, and returns the

result of applying the function to the integer twice. By Rice’s theorem [95], the contract on the

first argument (-> integer? integer?) cannot be checked by inspecting the procedure

12

vi=n|#|#| ()| N (x:1e)| (locr)| (loc/pjklctev)|cte
ctc == (flat/c v) | (ref/c ctc) | (= : 7 cte ctc) | (contract/c : 1)
ex=x|v|(refe)| (le)|(e:=e)| (ee)| (M(x:T)e)
|(let(xe)e)|(ifeee)|(e+e)|(e-e)|(e<se)
| (flat/ce) | (reflce) | (- :Tee)
| (monjkiee)|(checkjkee)| (errorjk)
B :=Unit| Int| Bool
7= B| (r - 1) | (z contract) | (z ref)

Figure 5: CtcPCF Syntax.

passed as an argument to this function. Instead, we follow Findler and Felleisen’s semantics of
contracts and check that all uses of the contracted function satisty the contract [37]. To accom-
plish this, contracts are decomposed into their constituent parts and attached to the relevant
values. Contract checks occur only when “flat” values (which, unlike functions, do not have
higher-order behavior) are available to be checked by predicates appearing in the contract. In
effect, the contract system creates “proxy” values that behave the same as the underlying value,
but insert checks at opportune moments.

To give a clear semantics of this behavior, the next section presents a model of higher-order

contracts as presented by Findler and Felleisen [37] and later extended by Dimoulas et al. [25].

2.2 A MoODEL FOR CONTRACTS

To model contracts, we use Plotkins PCF [90] extended with contracts and references. PCF itself
is an extension of the simply-typed A-calculus with integers, booleans, and recursion. The syntax
of our model, which we call CtcPCEF, is presented in Figure 5.

The terms of this language are standard, except for forms related to contracts and contract
checking. There are four types of contracts in the model: flat contracts (flat/c e), contracts for

references (ref/c e), contracts for functions (- :7tee), and a contract for contracts themselves

13

(contract/c : 7). Contracts are attached to values in the language by the contract monitor term:
(monjkle. e). A contract monitor checks that values that flow from the “server” e, to its “client”
context satisfy the contract e.. The labels j, k, and identify the components whose interaction is
monitored by the contract: the contract itself (j), the server (k), and the client (/). These labels
will be used to verify that contracts are correctly enforced, and to assign blame to the component
responsible for a contract violation. The value (loc/pj k I ctc v) is a proxy for a reference, and is
described below.

Unlike the model presented by Dimoulas et al. [25], CtcPCF has first-class contracts. That is,
the contract that a monitor attaches to a value is computed by the program, rather than appearing
as a constant (hence it is represented by an expression e. rather than from a separate grammar
of contracts). Likewise, the contract combinators described above are composed from arbitrary
expressions that may compute appropriate contracts at runtime. We include this extension to the
previous model because it is necessary for building authorization contracts, which are presented
in Chapter 5.

The term (check j k (v. v) v) is used to check that a value v satisfies a predicate v. imposed by
some flat contract (flat/c v.). If (v.v) evaluates to false, the contract system uses the labels as-
sociated with the check to raise the error (error j k), which says that contract j was violated by
component k. These terms do not appear in the surface syntax of the language, but are created
during the evaluation of contracted values.

A type system for CtcPCF is shown in Figure 6. Again, it is mostly standard, other than the
rules for typing contracts and contract monitors. These rules ensure that contracts are applied
only to values whose type matches the type expected by the contract. For example, the function
contract (- : 7 ctc, ctc,) can only be applied to functions with the type 7. The contracts for the
domain and range (ctc, and ctc,) of the function must be contracts for values of type 7,and 7., where

7= (1.~ 7,). Of course, the compatability between contracts and the values they are attached to

14

could be enforced by the contracts themselves. We use a type system to eliminate the additional
complications this would add to the semantics of the model.

To give meaning to the language, we extend the reduction semantics [34, 89] given by Di-
moulas et al. [25]. The evaluation contexts used by the semantics are given in Figure 7. They are
mostly standard and enforce strict, left-to-right evaluation of expressions. Of the reduction rules
given in Figure 8, we focus on those relevant to the semantics of contracts: flat/c, contract/c, -/c,
ref/c, loc/p-read, loc/p-write, check-true, and check-false.

Rule flat/c applies the predicate associated with the contract to a monitored value. The label
k is used when checking the contract because satisfying the predicate is the responsibility of the
server component.

Rule contract/c imposes no restrictions on the contract value provided by the server. A more
sophisticated contract system could extend this contract to enforce more checks.

Rule —/c attaches a function contract to a function. It creates a proxy function that wraps the
original function with additional monitors to check the contracts for the domain and range of
the function. The labels of the components for the domain contract are swapped to reflect that
the client of the function is responsible for supplying an acceptable argument, which will then
be received by the server of the function.

Rule ref/c attaches a contract to a reference. Again, this creates a proxy value around the ref-
erence that will enforce the contract on values stored into or read from the reference. Unlike
functions, we must use a special type of value (loc/p;j k I ctc v) to implement this proxy because
the language without contracts does not have a transparent interposition mechanism for ref-
erences. Rules loc/p-read and loc/p-write replace occurances of reference proxies that appear in
expressions for reading and writing references with expressions that read or write the reference
only after checking that the value read from or written to the reference satisfies the reference’s

contract.

15

I'>+n:lInt I; 2+ () : Unit I; 2+ #t : Bool I; X+ #f : Bool

Ixp1];2¢+e: 1

I'; X + (contract/c : 1) : ((r contract) contract) IX-MANix:t)e):(u-1)
F;Zl—e, LT
Ix»1];2Fe 1 =1 IZre:t I >+e:(rref)
I Z-(let(xe)e): I'; X+ (locr) : (rref) I; X+ (refe) : (rref) ;Ze(le):t
I;X+e : (tref) I 2+-v:(rref) IZre :(u-1)
IZre:T I'; 2+ ctc : (r contract) I'x)=1 IZre 1
IZr(eri=e): 1 I; 2+ (loclpjk I cte v) : (rref) IXex:t 2 (ee)
I; 2+ e : Bool
IXre:t I2rFe :Int I2+Fe :Int
Ixp1;Zre:T IXre:t I'Xre :Int Ii>XrFe:Int

Z-(M(x:ne) T I+ (fe ees) it I'Xr(e;+e):Int I 2k (er-e):Int

I'Xre :Int
I X e Int I;2+e:(B- Bool) I'; X+ e : (rcontract)

I 2+ (e; < e) : Bool I'; X+ (flat/c e) : (B contract) I; X+ (ref/c e) : ((r ref) contract)

I'; X+ e, : (1, contract)
I'; X+ e, : (1. contract) IXvre T I; 2+ e : Bool
T=(u->T1) I'; 2+ e, : (r contract) ket

I 2+ (> :1e e) : (Tcontract) IZ-(monjkle e):t Iy 2+ (checkjkese): T

Figure 6: Well-typed CtcPCF Terms.

16

Ex:=[]|(Ee)| WE)| (let(xE)e)| (ifEee)
|[(E+e)| v+E)|(E-e)|(v-E)|(E<e)| (v<E)
| (refE) | (E:=¢)| ((loct) :=E) | (1E)
| (flat/c E) | (ref/cE) | (= :7Ee)| (> :TVE)
| (monjkIEe)| (monjklctcE)| (checkjk E v)

Figure 7: CtcPCF evaluation contexts.

Rules check-true and check-false give semantics to checking contract predicates. If the pred-
icate returns true for the contract-monitored value, check passes the value to the client context.

Otherwise, it halts the execution of the program and raises a contract error.

2.3 CORRECT BLAME AND COMPLETE MONITORING

The semantics presented in the previous section gives a concrete meaning to contracts, but does
not present a rationale for the design of its contract system. In this section, we consider two
desirable properties of a contract system and how they influence its design: correct blame and
complete monitoring.

Recall that one of the benefits of contracts over more ad-hoc approaches to checking the in-
eractions between components is the ability to identify the part of a program responsible for an
error. But how should this part be determined, and what does it mean to be responsible for an
error? While a number of answers to this question have been proposed [13, 37], we follow the
criterion for correct blame given by Dimoulas et al. [21, 23, 25]: “a contract system should blame
a party only if the party controls the flow or return of values into the particular contract check that
fails”

The second criterion, complete monitoring, was also introduced by Dimoulas et al. [21, 25]. It
strengthens the correct blame property to also require that every flow of values between compo-

nents can be monitored by a contract. As we will see in the rest of this dissertation, this property

17

CE[((N (x:71) e) m)], o
E[(M (x : 1))], 0>

CE[(let (x v) e)], o)
CE[(if #t e,)], 0)
CE[(if #f e, e,)], 0>
CE[(n, + n)], o)

<E[(nl - 7’12)], o)

(E[(n; = m)], o)

CE[(ref v)], o

CE[((loc r) :==v)], o»
CE[(! (loc)], o)

(E[(monj k I (flat/c v.) v)], o

— (Ele/[x » v]], o)

— (Ele[x » (L (x : 1) &)]], &
— (E[e[x » v]], o>

— (E[el], o)

— (E[eJ], o)

— (E[n], 0)

where n=n, + n,
— (E[n], 0)

where n=n, - n,
— (E[V], &

wherev=mn,<sn,

—s (E[(loc 1], ofr+~ v])
where r fresh

— <E[), ofr— v]»

— (E[¥], o
where o(r) = v

—s (E[(check j k (v. v) v)], 0

(E[(monj k I (contract/c : 1) ctc)], o) — <E[ctc], o)

CE[(monj kI (= :7ctectc,) v)], o

(E[(mon j k I (ref/c ctc) v)], o»
CE[(' (loclp j k I ctc v))], o)
(E[((loclpj k I ctc v,) :=v)], o
(E[(check j k # v)], o
(E[(checkj k #f v)], o

[app]
[fix]
[let]

[if-true]
[if-false]
[plus]

[minus]

[less-than-equal]

[ref]

[update]
[deref]

[flat/c]

[contract/c]

— (E[(A (x 1) (monj k [ctc, (v (monjlk ctcs x))))], o) [/c]

where (z,-> 1) =71
— (E[(loc/p j k I ctc)], o)
— (E[(monj k I ctc (! v))], &
— (E[(v, :==(monj L k ctc v))], o)
— (EW], o

— ((errorj k), o

[ref/c]

[loc/p-read]
[loc/p-write]
[check-true]
[check-false]

Figure 8: CtcPCF Reduction Semantics.

18

... | (oWn v) | (Obl v Is)

....| (ownel)| (oblej ks Is)
... | (OWN E I) | (ObI E j ks Is)
1] (own O

Figure 9: Ownership annotations.

provides a firm foundation on which to build enforcement mechanisms for a large class of prop-
erties.

To characterize these criteria and prove that a contract system satisfies them, Dimoulas et al.
extend the contract system’s syntax and semantics with annotations describing the ownership of
terms and the obligations that contracts impose on values. These syntax extensions for CtcPCF
are given in Figure 9.

The ownership annotations (own v) and (own e) indicate that the terms v and e are owned by
the corresponding components I. The obligation annotation (obl v (I...)) says that components
(I...) are responsible for satisfying the contract v. Obligation annotation (oblej (k...) (I...)) is a
delayed obligation which denotes that expression e, which will evaluate to a contract, is owned
by component j, and that components (k ...) are responsible for contracts appearing in positive
positions in the contract and components (I ...) are responsible for contracts appearing in negative
positions. Positive positions are those in which the contract applies to a value flowing from the
server to the client. Negative positions are those in which the contract applies to a value flowing
from the client to the server. An ownership context O is either a hole [] or an annotated value
(own O1). Term O[v] represents the value v wrapped in zero or more ownership annotations.

In order to make sense of ownership and obligations, the annotations in a program must be
consistent with the component structure of the program. The judgment I'; Z; I - e, given in Fig-

ure 10 formalizes this idea. Ownership environments I"and X associate owners with variables and

19

I'xe ;2 ke

X len LI X lw#t X lv# I3 0k(contract/c:1) D IFA(x:7T)e)

T2 e T2 ke
Ixe ;2 ke (=1 2 e ;2 ke T2 ke

I lr(let(xe)e) T2 1k(locr) I3 0n(refe) ;X iv(le) TG X1k (ei=e)

;2 e
;2 kv ;2 e ;2 e,
I % (kD); (kD);j» cte I'x)=1 ;2 ke Ixw1; 2 1ke I 2 1 kes

I 20 (loclpjklctev)y T2 0kx I ZIk(ere) ZIF(M(x:n)e) I E LI (ife e es)

T2 ke T2 e T2 ke
T2 e, T2 ke T2 ke, Iy lre I; 2 lre

I lr(es+e) X lr(e-e) IXlr(erse) T2 1w (flatlce) T 251 (reflce)

;2 ke I; 2 k- (own e, k)
L2 lke I 2 (k) (D jv e

L Z k(- iTteres) X lr(monjkle (owne:k)) I;Z; 1w (errorjk)

I 2 je
T2 ke, 2 e

I; 2,1 (checkjke e:) I %1 (ownel)

Figure 10: Well-formed terms.

20

k€ ks I 25 Is; ks; j > v
I 25y T 2 ks Is; j > v,

I; %5 ks; Is; j > (obl (flat/cv) k) I3 25 ks; Is; j > (> t7viv) T Z; ks; Is; j > (contract/c : 1)

Is;,=ksUls
[25 sy sy j > v

T; 25 ks; Is; j> (reflcv) T 25 ks; Is; j > (obl e j ks Is)

Figure 11: Well-formed contracts.

locations referenced by a term. An expression is well-formed if all expressions within a compo-
nent are annotated with that components ownership label. Within an expression, the ownership
of sub-expressions may only differ from the expression where the sub-expression is separated by
a contract monitor with the corresponding client and server labels. In this way, monitor expres-
sions serve as component boundaries.

Assigning blame correctly also requires that contracts correctly assign responsibility for their
constituent predicates to the correct components. To formalize this property, the well-formedness
of contract monitors also requires that the monitor’s contract is a well-formed contract. The
judgmentT; ; (k ...); (I...); j > e requires that ownership annotations within the contract are well-
formed with respect to the contract’s ownership label j. In addition, it requires that obligation
annotations appearing within the contract are assigned to the correct party, giving a clear defini-
tion to the “positive” and “negative” parties described above. Because CtcPCF supports first-class
contracts, the definition of well-formed contracts differs from the judgment given by Dimoulas
et al. [25]: it has an additional rule for delayed obligation annotations that simply requires that
they are well-formed with respect to the context. The semantics of annotated CtcPCF will ensure

that these delayed obligations are correctly assigned to contracts as soon as the contract attached

21

ELO[A (x : 1) e)] O], 0> — [app]
(E[e;[x ~ (own v; D)]], o
where [= context-label[E, I,], ownership-free[v.], owned[O,, [T, owned[O;,]
CE[(M (x:7))], 0) — [fix]
(E[e[x » (own (M (x : 7) e) D)]], o)
where [= context-label[E, [,]

CE[(let (x O[v)) e)], o) — [let]
(E[e[x » (own v D)]], o»

where | = context-label[E, l,], ownership-free[v], owned[O, []

CE[(if O[#t] e, e,)], 0) —> [if-true]
<E[€]], U>

where I = context-label[E, L,], owned[O, I]

CE[(if O[#f] e, e,)], 0) —> [if-false]
<E[ez], o)

where I = context-label[E, I,], owned[O, I]

<E[(Ol[ﬂ1] + Oz[i’lz])], o) — [plus]
(E[n], o

where [= context-label[E,], n = n; + n,, owned[O,, [T, owned[O, []

(E[(O[n] - O[m))], 0> — [minus]
(E[n], o)

where [= context-labellE, I,], n = n, - n,, owned[O,, I1, owned[O,, [1

(E[(O[n] < O[m])], o) — [less-than-equal]
CE[M], o

where [= context-label[E, [,], v = n, < n,, owned[O;, [T, owned[O,, []

(E[(ref OV])], o) —> [ref]

(E[(loc 1)], alr~ v])
where ownership-free[v], | = context-label[E, [,], owned[O, I, r fresh
(E[(O[(loc)] := Ov])], 0» — [update]
CE[(lown v)], alr— v]
where | = context-label[E, l,], ownership-free[v], owned[O, I], owned[O;, I]
CE[(' O[(loc N, o> — [deref]
(E[(own v)], o
where o(r) = v, [= context-label[E, I,], owned[O, I]

Figure 13: Annotated CtcPCF Reduction Semantics.

22

(E[(obl O[(flat/c v)] j ks Is)], o) — [flat/c-obl]
(E[(own (obl (flat/c v) ks) j)], o
where j = context-label[E, I,], owned[O, jl

CE[(obl O[(— : T v; w)]j ks Is)], o) — [>-obl]
(E[(= : 7 (obl v, jis ks) (obl v, j ks Is))], o>
where j = context-labell E, ,], owned[O, j]
(E[(obl O[(contract/c : 1)]j ks Is)], o) — [contract/c-obl]
(E[(own (contract/c : 1) j)], o)
where j = context-labellE, l,], owned[O, j]I
(E[(obl O[(reflc v)] j ks Is)], o) — [ref/c-obl]
(E[(own (ref/c (obl v Is; Isz)))], o
where j = context-labell E, L], Is; = ks U Is, owned[O, j]
(E[(monj k I O;[(obl (flat/c v.) Is)] O[], o) — [flat/c]
(E[(check j k (own (v. v) j) v)], o)
where [= context-label[E, I,], k € Is, ownership-free[v], owned[O;, j1, owned[O;, k]
(E[(monj k I O;[(contract/c : 7)] OJctc])], o) — [contract/c]
(E[(own strip[ctc, k1)], o
where | = context-labell E, [,], ownership-free[ctc], owned[O,, jI, owned[O., k]

E[(monj k1 0[(~ : T cte, ctc,)] O], 0y — [>]
CE[(A (x : 1) (monj k I cte, (v (monj Ik ctcy x))))], o>
where [= context-labellE, L], (. > 7,) = 7, ownership-free[v], owned[O,, jI, owned[O,, k]
(E[(mon j k I O/[(ref/c O)ctc]))] O], o) — [ref/c]
(E[(loclpj k I ctc v)], o>
where [= context-label[E, [,], ownership-free[v], owned[O;, jI, owned[O;, j1, owned[O:;, k]
CE[('Ol(loclp j k I cte v)D], o) — [loc/p-read]
(E[(own (monj k I (own ctc j) (! v)) D], o
where [= context-label[E, I,], owned[O, I]
CE[(Of(loc/pj k I ctc v,)] == O:¥))], 0) —> [loc/p-write]
CE[(v, ;== (monj I k ctc (own v1)))], o)
where [= context-label[E, I,], ownership-free[v], owned[O;, I1, owned[O, I]
(E[(checkj k O[#t] v)], o) — [check-true]
<E[v], o)
where owned[O, j]
(E[(check j k O[#f] v)], o) — [check-false]
{(errorj k), o
where owned[O, j]
(E[(errorj k)], o> — [error]
{(errorj k), o

Figure 13: Annotated CtcPCF Reduction Semantics (Continued).

23

by a contract monitor is reduced to a value.

Finally, the reduction semantics of CtcPCF is modified to explicitly track the ownership of
terms and record contract obligations. The semantics, given in Figure 13 are mostly unchanged
from Figure 8. However, the semantics now require that all sub-expressions of the current re-
ducible expression have the same ownership annotation, unless the expression is an explicit
boundary between components, that is, a contract monitor. The judgment owned[O, [] is true
when all of the ownership annotations appearing in the stack of ownership annotations O have
the same label, . Meta-function context-label[E, I,] evaluates to the ownership label of the anno-
tated expression closest to the hole in the evaluation context E, or to label I, if there is no such
annotation. For a contract monitor (monj k I v. v), the semantics requires that the contract v, is
owned by component j and the value vis owned by the server component k. The rules for obliga-
tion annotations, flat/c-obl, —-obl, contract/c-obl, and ref/c-obl, propagate obligation annotations
according to the rules of well-formed contracts.

With this annotated semantics in hand, we can now formally define blame correctness and

complete monitoring in the style of Dimoulas et al. [21, 25].

Definition A contract system is blame correct if and only if for all terms e, such that @; &; I I e,

if <eys, @) —>™ (E[(monj k I (obl (flat/c v.) Is) v)], o, then v is owned by component k and k € Is.

Blame correctness requires that when a well-formed program checks a flat contract, the owner
of the value and the server label of the monitor coincide, and furthermore, that component will

be blamed if the contract fails.

Definition A contract system is a complete monitor if and only if for all well-typed terms e, such

that @; &: I, I e, either

24

o ey, D) —* v, o),

o foralle; and o, such that ¢e), @) —* <e,, 0,), there exist e; and o, such that <e;, 0,) — <es, 02,

or

o {ep, Dy —>™ {e;, o1y —>™ ((errorj k), oz and for all such terms e;, ¢; has the form
E[(mon j k I (own (obl (flat/c v.) Is) j) v)] where E is owned by component /, v is owned by &,

and k € Is.

This definition requires that the annotated semantics do not get stuck for well-formed terms.
This, coupled with the ownership restrictions imposed by the annotated semantics, ensures that
values flow between components only at explictly marked component boundaries that enforce
contracts.

Using the subject reduction developed by Dimoulas et al. [25], it can be shown that the con-

tract system presented here satisfies both correct blame and complete monitoring.

2.4 RELATED WORK

There have been two, largely orthognal directions of research on behavioral contracts. The first
has focused primarily on first-order or nominal higher-order contracts and investigates how con-
tracts can be statically verified and used to statically prove properties of programs. The second
direction extends Findler and Felleisen’s work on structural higher-order contracts and inves-
tigates their semantics, extensions to other langauge features, and extensions to easily specify

particular classes of program properties.

VERIFICATION WITH BEHAVIORAL CONTRACTS A number of program verification systems have

been developed that use contracts as code annotations to express Hoare-style pre- and post-

25

conditions on components [7, 8, 11, 15, 18, 51, 72]. Rather than execute contracts at runtime,
these systems use automatic or interactive verification techniques to statically ensure that com-
ponents satisfy their specifications and are used correctly.

Verification using contract specifications has been applied to a number of security problems.
For example, SPARK Ada’s contracts can express dataflow constraints on how component in-
puts may influence component outputs [7]. More recently, the Ironclad approach to full-system
verification has used similar dataflow contraints to verify information-flow properties of applica-
tions [48]. Contracts have also been used to express and verify access control policies. Pavlova et
al. [86] compile high-level policies restricting component access to particular APIs into software
contracts. Using weakest-precondition propagation, the inserted software contracts are sufhi-
cient for static verification of the high-level policies. Similar approaches have been used to verify
that stack inspection policies are never violated [105] and to verify that a program satisfies trace
properties expressed in temporal logic [41].

The static security guarantees provided by these methods reduce the overhead of checking
security properties at runtime and eliminate the possibility of runtime security violations. How-
ever, they require extensive annotations throughout the program to support verification. In con-
trast, the run-time enforced security contracts presented in this dissertation require annotations
only on components directly related to security requirements. Furthermore, enforcing a desired
property requires first encoding it using annotations supported by the verification tool. Do-
ing this with the behavioral contract languages present in these systems may require encoding
the property imperatively using additional “ghost” state [65]. For example, a temporal property
could be enforced by translating the property into a finite state machine, recording the current
state in a variable, and adding annotations throughout the program to update and check the state.
For complex policies, the resulting contracts quickly become difficult to write and understand,

reducing the usefulness of contracts for documentation [86]. One approach to combatting this

26

complexity is to extend the contract specification language to support directly encoding certain
properties. For example, Trentelman and Huisman [121] extend the JML contract language with

support for properties expressed in temporal logic.

HIGHER-ORDER CONTRACTS FOR ADDITIONAL LANGUAGE FEATURES Using the implementation
techniques pioneered by Findler and Felleisen [37], contract systems have been developed to
enforce behavioral properties of a wide range of language features including objects with first-
class classes [112], delimited continuations [117], and parametric polymorphism [44]. Building
on this work, contract systems have been used extensively in the development of gradual type
systems, which blend typed and untyped languages by using contracts to ensure that untyped

code cannot subvert the guarantees of the type system [43, 104, 115, 116, 118].

HIGHER-ORDER CONTRACTS FOR SPECIFIC PROPERTIES In addition to the type-like properties
enforced by the higher-order contracts described in this chapter, contract systems have also been
proposed that allow programmers to succinctly express a wide range of desirable properties.

For example, Heidegger et al. [49] introduce access permission contracts, which restrict what
paths through object fields a method may read or write to during execution. In a capability-
based security setting, these access permission contracts are similar to the contracts we use to
restrict the use of sensitive resources. This dissertation shows how by enriching contracts with
additional features such as bounded polymorphism, more sophisticated security policies can be
enforced.

Disney et al’s higher-order temporal contracts [26] enforce trace properties on the order in
which procedures are called and returned. These contracts can be used to enforce arbitrary
execution-monitoring enforceable [99] trace properties of a program, but unlike authorization
contracts, provide limited support for writing complex access control policies like stack inspec-

tion, capabilities, or discretionary access control.

27

Capability Contracts

As we have seen, software contracts provide an expressive language for specifying and enforc-
ing interesting properties about how different components interact by exchanging values. For
example, contracts can enforce that the arguments given to a procedure satisfy a precondition,
or that calls to a procedure occur in a specified order. Unfortunately, it is not immediately clear
how to use such properties to control which users or parts of a program are permitted to access
particular resources or perform particular actions—in most langauges, a component may access
resources or perform actions via channels that are not evident from the values it is passed as
arguments.

It is possible, however, to design languages and systems where security can be expressed using

restrictions on the flow of values. This object-capability model of security was first described by

28

Dennis and Van Horn [20] in their design of a “Programming Semantics for Multiprogrammed
Computations,” and has since been used as the basis of a wide range of secure systems (e.g.,
KeyKOS [45], seL4 [50], and Capsicum [126]) and programming languages (e.g., Gedanken [94],
W7 [93], E [80], Joe-E [73], and Caja [78]).

At the core of this model is the notion of a capability, which is a value that corresponds to
the right to access a resource or perform an action. Possessing a capability grants its holder the
undisputed right to perform the underlying action. Security in a capability system is achieved
by carefully controlling which components are given access to individual capabilities. Crucially,
capabilities cannot be forged, but instead must be either granted to a component by some other
component that already possessed the capability or derived from an existing capability.

The object-capability model takes this notion one step further, and mandates that the ability
for components to communicate (and thereby to share capabilities) must also be mediated by ca-
pabilities. In object-capability languages, this is acheived by treating every reference to an object
(or closure in a functional language) as a capability to invoke that object. Thus objects become
both the components that may individually possess capabilities and the protected resources that
require capabilities to access.

By enforcing restrictions on how objects may share references, these languages empower com-
ponents to create their own access abstractions [80] that grant other components limited access
to capabilities by instead granting access to specially-created proxy components that forward
only acceptable requests. Building on this idea, appropriate design patterns can enforce fine-
grained application-specific access control requirements, including confinement and selective
revocation [79].

This chapter shows how software contracts can be used to express and enforce security poli-
cies in capability-safe programming languages. In Section 3.1, we examine the relationship be-

tween the interposition mechanisms provided by software contracts and the rules of the object-

29

capability model. Building on this, in Section 3.2 we show how several object-capability design
patterns can be expressed as contracts and how doing so can improve the readability and design
of programs written in object-capability languages. In Chapter 4 we will use the ideas from this
Chapter in the the design and implementation of a secure shell scripting language. The language,
SHILL, uses capabilities to restrict the effects of running a script to those explicitly enabled by the
capabilities it is passed as arguments. Furthermore, it uses contracts to give users fine-grained
control over how scripts use capabilities and to provide easy-to-understand specifications of what

a script might do.

3.1 CAPABILITY-SAFETY AND COMPLETE MONITORING

To explore the object-capability model in more depth, we will consider small examples written
in a small programming language inspired by E [80], dubbed E-on-Racket. Like E, E-on-Racket
is a dynamically-typed, object-oriented language. The language does not implement all of the
features of E, but captures the important features of E that enable object capability-based security.
Here, we elide most of the details of the language and just explain those that are relevant to the
examples that follow.

An object definition has the form

(def name
(to (method arg ...) body ...)

(recv (method-name args) body ...))

and creates a new object bound to the identifier name. Each method definition

(to (method arg ...) body ...)

defines a method of the new object with the name method. Sending a message to an object

(send obj method-name arg ...) invokes the method of obj with the same name. If

30

the object does not have a method with the given name, the recv method is invoked with the
requested method’s name as the first argument and a list of the arguments as the second argu-
ment. The recv method is not required in an object definition. If it was not included in the
object’s definition, the attempt to send the message fails, throwing an exception. The alternative
operation (call obj name args) also sends a message to the object obj, but name is an
expression that evaluates to a symbol corresponding to a method name, rather than a literal as
in send.

A procedure definition (def (name arg ...) body ...) creates a new procedure and
binds it to the name name. Procedures are represented as objects with a single method run.
Invoking an object or procedure with the syntax (obj arg ...) is equivalent to sending a
message: (send obj run arg ...).

The language is strictly lexically scoped but supports mutation of lexically bound variables
using the expression (set! id expr).

Since E-on-Racket is an object-capability language like E, there are a limited number of ways

that an object can acquire a reference to another object:
1. by initial conditions: two objects may reference each other before a computation begins,
2. by parenthood: the creator of an object is initially the only object with a reference to it,

3. by endowment: an object can close over references to objects available in its parent’s en-

vironment, and

4. by introduction: an object can receive references to other objects passed as arguments to

its methods or returned from methods it invokes.

These restrictions on the flow of objects within a program are sometimes referred to as capability

safety, and they provide a foundation for reasoning about programs [80].

31

(def (makeCounter)
(let ([count 0])
(def counter
(to (incr)
(set! count (+ count 2))
count)
(to (decr)
(set! count (- count 2))
count))
counter))

(define myCounter (makeCounter))

(send myCounter -1incr)

>
2
> (send myCounter 1incr)
4
> (send myCounter decr)
2

Figure 14: A counter object implemented in E-on-Racket.

32

Consider the example program in Figure 14. It defines a procedure makeCounter that returns
a new object encapsulating a variable count. The returned object provides two methods, incr
and decr, that increment the counter by two and decrement the counter by two, respectively.
Suppose we are interested in ensuring that the counter value is always even. According to the
rules of capability safety, we can determine which parts of the program have access to the value
of the counter count: the procedure makeCounter (by parenthood) and the object counter
(by endowment). To verify that the count is always even, we must ensure that neither of these
objects modify count in a way that violates the invariant and that neither leaks access to the
counter to another object. Clearly, the code only changes the counter in increments of two, and
so ensures that its value is even. Furthermore, we can observe that the methods of counter are
the only way to modify the counter value, since the values returned by the method cannot be
mutated.

Beyond facilitating this kind of local reasoning about programs, the capability-safety rules also
provide a mechanism for creating access abstractions that enforce security guarantees. For ex-
ample, suppose that we wish to share the counter with an untrusted piece of code, but ensure that
that code can only increase the value of the counter. Simply sharing the counter object can-
not ensure this property. Instead, we can create a new object that encapsulates the counter and
ensures that decr cannot be invoked. The program in Figure 15 demonstrates how to compose
programs safely using this pattern. The untrusted code is represented by a procedure evil that
takes as argument a counter object and a flag decr?. If decr? is #t, it attempts to decrement
the counter, violating the policy. Otherwise, it increments the counter. The procedure compose,
which integrates the untrusted code and the counter, creates a new object incr-on'ly that par-
tially implements the counter interface, but hides the method decr. When its incr method is
invoked, it simply forwards the message to the original counter. Because this interposition is

transparent to the evil procedure, the program works as expected as long as the untrusted code

33

(def (evil counter decr?)
(if decr?
(send counter decr)
(send counter 1incr)))

(def (compose fun counter arg)
(def dincr-only
(to (incr) (send myCounter 1incr)))
(fun dincr-only arg))

(define myCounter (makeCounter))

> (compose evil myCounter #f)
2

> (compose evil myCounter #t)
no such method: decr

Figure 15: Safely sharing a counter object.

34

obeys the policy. On the other hand, if the untrusted code tries to decrement the counter, its
attempt will fail.

Capability-safety ensures that it is always possible to protect sensitive behaviors of objects
by creating these types of proxy objects—an object can interpose at any boundary between it
and another object by replacing the value it would send across the boundary with a new ob-
ject. In essense, capability safety gives the necesary conditions for complete mediation of the
interactions between objects, in the same way that a contract system enforcing complete mon-
itoring (Section 2.3) ensures that it is always possible to interpose between components. This
connection between complete monitoring and capability-safety was first noted by Dimoulas et
al. [24], and provides the footing on which we develop contracts for capability-safe programs.
Capability-safety is, however, a stronger property than complete monitoring, since it requires
not only complete mediation between objects, but that all interposition points correspond to
where values are exchanged according to strict lexical scoping rules. In Chapter 5, we explore

how contracts can enable security when these restrictions are relaxed.

3.2 FROM PATTERNS TO CONTRACTS

To demonstrate the effectiveness of contracts for capabilities, we extend E-on-Racket with con-
tracts for objects and a syntactic form for attaching those contracts to objects. An object contract
(obj/c [method contract] ... [recv fun]) takes as arguments a list of pairs of per-
mitted method names and procedure contracts, along with an optional pair of the keyword recv
and a procedure. Contracts are attached to objects using the def /ctc form, which mirrors def
but allows a contract to be specified immediately after the definition’s header. When a method
on an object with an object contract is invoked, the method’s name is first found in the list of
permitted methods. If the method appears in the list, the call is allowed, but the selected method

is restricted by the corresponding contract. If the method is not in the list but a recv procedure

35

fun was provided, fun is invoked with the name of the requested method as an argument. It can
return either a contract or #f. Ifa recv procedure was not provided in the contract, or it returns
#f, the contract raises an error stating that the method could not be invoked. If fun returns a
contract, the call is allowed to proceed, but the method is restricted using the returned contract.
Like the contracts presented in Chapter 2, contracts in E-on-Racket are first-class values.

In the rest of this section, we show how a number of security design patterns can be written
as contracts and argue that doing so makes programs easier to understand and their security

properties easier to verify.

3.2.1 ATTENUATED SHARING

Recall the program from Figure 15 that uses a proxy object to prevent untrusted code from decre-
menting a counter. While this program does enforce the desired security policy, it is not trivial
to verify this fact. First, we must check that none of the arguments to the evil procedure give
access to the counter directly. Second, we must verify that the proxy object incr-on'ly is imple-
mented correctly. That is, it must not leak direct access to the counter object, it must not grant
access to any of the counter’s functionality except for the incr method, and it must correctly
forward allowed requests to the underlying counter object.

Contrast this implementation with the program in Figure 16. This version uses software con-
tracts to enforce the policy instead of constructing a proxy object. In particular, it specifies a
contract for the compose procedure that grants untrusted code limited access to the counter. Its

contract has four parts:

1. ((obj/c [incr (-> void)]) boolean? . -> . dinteger?),acontractforthe

fun argument which will receive untrusted code;

2. obj?, acontract for the counter argument, which will receive the unprotected counter;

36

(def (evil counter decr?)
(if decr?
(send counter decr)
(send counter 1incr)))

(def/ctc (compose fun counter arg)
(((obj/c [incr (-> void)]) boolean?
obj? boolean? . -> . dinteger?)
(fun counter arg))

(define myCounter (makeCounter))

> (compose evil myCounter #f)
2
> (compose evil myCounter #t)
compose: contract violation
cannot call hidden method: 'decr
in: the 1st argument of
the 1st argument of
(->
(->
(obj/c (incr (-> void)))
boolean?
integer?)
obj?
boolean?
integer?)
contract from: (function compose)
blaming: program
(assuming the contract 1is correct)
at: eval:3.0

->

integer?)

Figure 16: Safely sharing a counter object with contracts.

37

3. boolean?, a contract for the arg argument, which will be passed to fun; and
4. integer?, the contract for compose ’s result.

While this contract is complex, it is straightforward to verify that it satisfies the desired security
policy, since the contract describes exactly which values will be shared with the untrusted code
and how they will be used. In addition, it is no longer necessary to double check that the proxy
object incr-only was written correctly, since we can rely on the obj /c contract to impose the
desired restrictions without modifying the behavior of the underlying object.

Moving the enforcement of this policy to the interface of the compose procedure has addi-
tional benefits. The contract provides documentation of how client code is allowed to use the
objects it receives, which makes it easier to write and maintain programs that will not fail due to
security violations. Furthermore, the semantics of contracts mean that if security violations do
occur, it will be easier to track down which code is to blame. In the original program, the misbe-
having component causes the program to fail with the message no such method: decr, but
this provides no help discovering what code tried to access this method, whether or not it was
prevented from accessing the method to enforce a security policy, or what code put the policy in
place. Contrast this with the error message generated by the contract system. It reports that the
method is hidden rather than simplying missing and that the compose procedure imposed this

restriction on the first argument to its fun argument.

3.2.2 REVOCATION

More sophisticated design patterns can enforce more interesting policies. An early example of
capability design patterns is Redell’s “Caretaker” pattern, which demonstrates how to create re-
vokable capabilities in the object-capability model [92]. An adapation of Miller’s E implementa-

tion of the Caretaker pattern is given in Figure 17.

38

(def (makeCaretaker target)
(let ([enabled? #t])
(def caretaker
(recv (name args)
(if enabled?
(call target name args)
(error "disabled"))))
(def gate
(to (enable) (set! enable? #t))
(to (disable) (set! enable? #f)))
(values caretaker gate)))

>«

Figure 17: Redell’s “Caretaker” pattern [92], as presented by Miller [80].

The purpose of this pattern is to allow an object to grant another temporary access to the
target capability. The makeCaretaker procedure returns two objects, a caretaker and a
gate, that close over a shared variable enabled?. The caretaker object is a proxy object for
the target. It intercepts all messages to target, and forwards them only if enabled? is set to
#t. If enabled? is #f, the capability has been revoked, and the caretaker raises an error. The
gate object is retained by the target object’s owner, and provides two methods, enable and
disable, which allow the owner to enable or disable access to the target via the caretaker.

Because of the first-class nature of contracts, reproducing this design pattern using contracts
is straightforward. Figure 18 defines a procedure makeCaretakerContract that generates a
contract that can be used in place of a caretaker object. Unlike makeCaretaker, this procedure
does not take an object to protect as an argument and return a proxy to that object, but instead
returns a contract that can be attached to any object. As before, this contract closes over a vari-
able enabled? that is shared with a guard object that controls whether or not methods of the

protected object can be invoked. It specifies that no methods can be called by default. Each time

39

(def (makeCaretakerContract)
(let*x ([enabled? #t]
[caretaker/c
(obj/c [recv (A (name) (if enabled? any/c #f))]1)]1)
(def gate
(to (enable) (set! enabled? #t))
(to (disable) (set! enabled? #f)))
(values caretaker/c gate)))

Figure 18: Adapting the “Caretaker” pattern to contracts.

a method of an object with the contract is invoked, the recv function checks whether or not
enabled? is set to #t, raising a contract error if itis #f.

While reasoning about the correct use of this capability still requires careful consideration of
how the gate object is used, we still retain the benefits provided by the contract system, since
clearly the caretaker/c contract only interferes with the behavior of the objects it protects by
preventing accesses when the capability has been revoked. Furthermore, we can again push the

code that wraps objects with caretakers to the interface of the untrusted code.

3.2.3 MEMBRANES

A deficiency of the Caretaker pattern and other design patterns that interpose between objects
and untrusted code is that the target object must be trusted not to leak an unprotected reference
to itself to the untrusted code. Otherwise, the untrusted code could invoke methods of the object
even after its access has been revoked. The “Membrane” pattern [80] is designed to solve the
deficiency by recursively wrapping objects as they flow between components.

An E-on-Racket translation of Miller’s membrane implementation is given in Figure 19. It

works in the same way as the Caretaker pattern, but the caretaker object must also wrap the

40

(def (makeCaretakerMembrane target)
(let ([enabled? #t])
(def (wrap wrapped)
(if (not (obj? wrapped))
wrapped
(begin
(def caretaker
(recv (name args)
(if enabled?
(let ([wrappedArgs (map wrap args)])
(wrap (call wrapped name wrappedArgs)))
(error "disabled"))))
caretaker)))
(def gate
(to (enable) (set! enable #t))
(to (disable) (set! enable #f)))
(values (wrap target) gate)))

Figure 19: The membrane pattern.

41

arguments and return values of any method invoked on it with an additional instance of the
caretaker pattern. When the owner of the target capability revokes it by calling disable
on the gate, all of the objects that have passed through the membrane are revoked, cutting oft
any communcation channel between the target object and the untrusted code.

The resulting code is very complicated and its correctness is difficult to reason about. To
guarantee that all access to the target is revoked, we must ensure that every value flowing from
the target object or any value it returned is wrapped with a caretaker proxy. To see the
difficulty in reasoning about this type of property, consider a naive solution to this problem that
simply recursively wraps the result of any method call:

(if (not (obj? wrapped))
wrapped
(begin
(def caretaker
(recv (name args)
(if enabled?
(wrap (call wrapped name args))
(error "disabled"))))
caretaker)))
This simple solution is subtly incorrect. The problem is that an argument passed to the target
object might itself be an object. In that case, the target object can subvert the caretaker by
communicating with the caller by invoking the argument object, rather than through target
object’s return value. A correct solution to this problem is the code shown before in Figure 19.
One of the advantages of contracts in comparison to these capability design patterns is that
they provide a framework for composing contracts together to enforce more intricate proper-
ties while allowing their correctness to be considered independently. To see this, compare the
previous implementation of a caretaker membrane with the contract-based implementation in

Figure 2o0.

This implementation decomposes the task of creating a caretaker membrane into two parts.

42

(def (membrane/c ctc-in ctc-out)
(recursive-contract

(and/c

ctc-out
(or/c

(obj/c

[recv (A (name)
(=>... (membrane/c ctc-out ctc-1in)
(membrane/c ctc-1in ctc-out)))])

any/c))))

(def (makeCaretakerMembraneContract)
(let-values ([(caretaker/c gate) (makeCaretakerContract)])
(values (membrane/c any/c caretaker/c) gate)))

Figure 20: Adapting the membrane pattern to contracts.

The first is the implementation of the caretaker/c contract in Figure 18. The second is a
new contract combinator membrane/c that recursively applies contracts to all values flowing
across a contract boundary. This combinator generalizes the membrane design pattern shown
above in two ways. First, it is not specialized to the caretaker pattern, but can instead recursively
attach any contract. Second, it takes as arguments two contracts, ctc-1in and ctc-out, instead
of one. The first contract ctc-1n is applied to any value flowing into the protected object (or
objects that flowed out of it). The second contract ctc-out is applied to any value flowing out
of the protected object (or objects that flowed out of it).

The definition of membrane/c uses several contracts that have not yet been introduced. Con-
tract (recursive-contract expr) delays the evaluation of expr, which evaluates to a con-
tract, until it is attached to a value. This allows the contract itself to appear in the body of expr

without causing the evaluation of expr to diverge. The contract (->... ctc-arg ctc-

43

result) is a contract that accepts procedures of any arity. It wraps every argument to the
contracted procedure with contract ctc-arg and every result with the contract ctc-result.
When it is attached to a value, the membrane/c contract applies two contracts to the value using
the and/c combinator: ctc-out, since the value is being passed out of the membrane; and a
second or/c contract that ensures contracts are recursively added to the value if it is an ob-
ject or procedure. The (->... (membrane/c ctc-out ctc-in) (membrane/c ctc-
in ctc-out)) contracts take care of these recursive contract applications. Crucially, the mem-
brane contract attached to arguments has the ctc-1in and ctc-out contracts reversed to reflect
that values passed to those arguments in the body of the procedure flow from the inside to the
outside.

Again, careful reasoning is required to verify that this contract correctly imposes restrictions
on all of the values it is recursively attached to. Unlike the previous implementation, however, this
reasoning can be separated from reasoning about the implementation of the Caretaker pattern.
The final combination of the two guarantees is achieved by simply composing the membrane/c

combinator with a caretaker contract: (membrane/c any/c caretaker/c).

3.2.4 DYNAMIC SEALING

The final design pattern we consider is the use of “Sealer-Unsealer” pairs to allow for the con-
trolled amplification of access rights; that is, for the combination of two different capabilities to
permit access to more capabilities than can be accessed by using the two capabilities separately.
This pattern was introduced by Morris [82] as a technique to allow components to authenti-
cate the values as having a particular provenance. Morris’ account presents the pattern in the
Gedanken programming language [94]. Here, we describe its use in E-on-Racket.

The key primitive of this pattern is an operation createSeal that returns a pair of procedures

seal and unseal. The seal procedure takes a value as an argument and returns a new value

44

(def (makeMint)
(def mint
(to (makePurse balance)
(def purse
(to (getBalance) balance)
(to (deposit amount src)
(send src decr amount)
(set! balance (+ balance amount)))
(to (decr amount)
(set! balance (- balance amount))))
purse))
mint)

Figure 21: An insecure mint.

that is completely opaque to any code except the seal procedure’s matching unsea'l procedure.
If the unseal procedure is invoked on this opaque value, it returns the original value. Invoking
unseal on any other value raises an error.

To see how this pattern allows components to amplify the rights they possess, consider the
example program in Figure 21, adapted from Miller et al’s paper “Capability-Based Financial In-
struments” [77]. This program implements a simulation of a system of accounts. Each mint ob-
ject controls a virtual currency and provides a single method makePurse that returns a purse
object with a starting balance. A purse represents an account and has two public operations:
getBalance, which returns the current balance, and deposit, which transfers a specified
amount of currency from one purse to another. To facilitate the transfer of currency, the purses
also have a decr method that subtracts an amount for the purses’ balance.

The key security policy enforced by the mint and its associated purse objects is that only

the mint can change the total amount of money: that is, at any point in time, the sum of all of

45

(def (makeMint)
(let-values ([(seal unseal) (CreateSeal)])
(def mint
(to (makePurse balance)
(def (decr amount)
(set! balance (- balance amount)))
(def purse
(to (getBalance) balance)
(to (deposit amount src)
((unseal (send src getDecr)) amount)
(set! balance (+ balance amount)))
(to (getDecr amount)
(seal decr)))
purse))
mint))

Figure 22: A secure mint using sealers and unsealers.

the purse balances is exactly the sum of the initial balances of all the purses belonging to the
mint. The implementation in Figure 21 does not satisfy this policy, since access to a purse allows
money to be created or destroyed by invoking the purse’s decr method.

Satisfying this policy presents a conundrum: the implementation of deposit method needs
access to the decr method, but it must be protected against any other use. Sealers and unsealers
solve this problem by allowing purse objects to authenticate that the objects they communicate
with are purses belonging to the same mint. The revised program is given in Figure 22. In this
program, each mint object closes over a unique seal and unsea'l pair. These procedures will be
used to share values between purses belonging to the mint without exposing them to untrusted
code. To achieve this, the decr method is moved out of the purse object’s public interface and

replaced with a new method getDecr. The getDecr method returns a reference to the decr

46

procedure, but first seals it with the mint’s seal. To any code that doesn’t belong to the same
mint, the resulting value is useless and can’t be used to modify the balance of the purse. On the
other hand, other purses from the same mint have access to the unseal procedure and thus are
able to unseal the procedure in the body of the deposit method, successfully implementing the
original protocol.

This pattern is powerful, but comes at a high cost—retrofitting the mint to enforce the desired
security policy required significant modifications to the structure of the original program and
complicated reasoning to justify both that it is secure and that it preserves the desired function-
ality. In contrast, contracts make it possible to preserve the clean implementation of the mint
program while enforcing this property. Before demonstrating this, we need to introduce a new
type of contracts: bounded polymorphic contracts.

Bounded polymorphic contracts generalize the parametric-polymorphic contracts that have
been previosly proposed [44], and are inspired by bounded parametric-polymorphic types and
bounded existential types [17]. Before describing bounded polymorphic contracts for objects, we
present the corresponding contracts for functions. A bounded polymorphic contract quantifier
is either universally quantified (asin (V X <: ctc-bound)) or existentially quanitified (as in

(3 X <: ctc-bound)). The form

(bounded-> (quantifier ...) ctc-arg ... ctc-result)

creates a procedure contract (-> ctc-arg ... ctc-result), where the contracts appear-
ing in quantifier bounds, arguments, or the result can refer to quantifier variables X. Each time
the contract is attached to a function, a fresh contract is created for each quantifier variable X.
Values flowing into the polymorphic function through a universal quanitified contract vari-
able (i.e., values protected by some univerisally quantified X in negative position with respect to
bounded->) are wrapped with the corresponding bound contract. Values flowing out of the

polymorphic function through a universally quantified contract variable (i.e., values protected

47

by some universally quantified X in positive position with respect to bounded->) are checked
to ensure they were wrapped by the corresponding X contract in a negative position. If so, the
bound contract is removed from the value; if not, a contract violation is signaled.

Like bounded universally quantified types, bounded universally quantified contracts are use-
ful because they provide a mechanism to grant a procedure a limited interface by which to in-
teract with its arguments, but allow the caller to recover the full interface when the procedure
returns. For example, the following definition creates a function example that may use its first

argument f only according to the contract (-> integer? integer?):

(def/ctc (example f x)
(bounded-> ((V X <: (-> -nteger? -dinteger?))) X any/c X)
(f x)
)

Invoking example with an integer works as expected:

> (example (A (x) x) 0)
#<procedure>

Supplying a non-integer value causes example to invoke f with an non-integer argument, vio-
lating the bound attached to the contract variable X:

> (example (A (x) x) #f)
example: broke its own contract
promised: integer?
produced: #f
in: the 1lst argument of
the 1st argument of
(-> X any/c X)
contract from: (function example)
blaming: (function example)
(assuming the contract is correct)
at: eval:1.0

However, the restriction is lifted when f is returned through another instance of the X contract,

allowing the following to succeed:

48

> ((example (A (x) x) 0) #f)

#t

Existentially quantified contract variables have the opposite effect. Values flowing out of the
polymorphic function through an existentially quanitified contract variable (i.e., values protected
by some existentially quantified X in positive position with respect to bounded->) are wrapped
with the corresponding bound contract. Values flowing into the polymorphic function through
an existentially quantified contract variable (i.e., values protected by some existentially quantified
X in negative position with respect to bounded->>) are checked to ensure they were wrapped by
the corresponding X contract in a positive position. If so, the bound contract is removed from
the value; if not, a contract violation is signaled.

Existential types are useful because they allow programs to define abstract data types that can
only be manipulated via a prescribed interface. Bounded existential types relax this, and allow
programs to define partially abstract data types, where some operations are publically available
and some are hidden. Bounded existentially quantified contracts afford a similar idea. Consider

this example program which returns two values:

(def/ctc (example)
(bounded-> ((3 X <: (-> 1dnteger? dinteger?)))
(values X (-> X any/c any/c)))
(values (A (x) x) (A (f x) (f x))))
The first value is the identity function with the bound contract (-> integer? integer?)
and the second is function that consumes a function with the existentially quantified contract

along with a second value and applies the function to the value. We know from the contract

bound that it is safe to call the first value with an integer:

> (let-values ([(f apply) (example)])
(f 0))

49

However, despite the fact that this function is the identify function, the bound prevents us from

invoking it with non-integer arguments:

> (let-values ([(f apply) (example)])
(f #1))
example: contract violation
expected: integer?
given: #f
in: the 1lst argument of
the range of
(-> (values X (-> X any/c any/c)))
contract from: (function example)
blaming: program
(assuming the contract is correct)
at: eval:1.0

The second function returned by example has the contract (-> X any/c any/c), and thus

can access the underlying value ignoring the bound:

> (let-values ([(f apply) (example)])

(apply f #f))
#f

Moreover, invoking the second function requires that its first argument witnesses the existential
parameter X, and so it cannot be called with any value other than the corresponding return value

of example:

> (let-values ([(f apply) (example)])
(apply (A (x) x) #f))
example: contract violation
not X: #<procedure>
in: the 1st argument of
the range of
(=> (values X (-> X any/c any/c)))
contract from: (function example)
blaming: program
(assuming the contract 1is correct)
at: eval:1.0

50

(def (makeMint)
(def/ctc mint
(obj/c
(4 P <: (obj/c
[getBalance (-> amount?)]
[deposit (=> amount? P void)]))
[makePurse (-> amount? P)])
(to (makePurse balance)
(def purse
(to (getBalance) balance)
(to (deposit amount src)
(send src deduct amount)
(set! balance (+ balance amount)))
(to (deduct amount)
(set! balance (- balance amount))))
purse))
mint)

Figure 23: A secure mint using contracts.

In fact, using this property we can provide a succinct implementation of the CreateSeal op-

erator:

(def/ctc (CreateSeal)
(bounded-> ((d X <: opaque/c))
(values (-> any/c X) (-> X any/c)))
(values (A (x) x) (A (x) x)))

where opaque/c is a contract that hides all of the functionality of its contracted value.

We extend object contracts with an additional list of quantifiers to yield bounded polymorphic

object contracts. The new syntax is:

(obj/c quantifier ...
[method contract]
[recv fun])

51

As with bounded polymorphic function contracts, the variables declared in quantifier
may appear as contracts anywhere in the bounds or method contracts that follow.

Figure 23 shows a new version of the mint program using a bounded polymorphic contract.
The use of contracts is able to clearly separate the functionality of mints and purses from the code
that preserves the integrity of mints. Each mint object has a unique existentially quantified con-
tract P which represents purses belonging to that mint. Purses created by the mint’s makePurse
method are each wrapped with this contract. The bound on P enforces two key properties: first,
that code without direct access to the underlying purse value can invoke only the purse’s get-
Balance and deposit methods, and second, that deposit can be invoked only with another

purse from the same mint. Together, these properties guarantee the desired security property.

3.3 RELATED WORK

OBJECT-CAPABILITY DESIGN PATTERNS In addition to the design patterns we have presented in
this chapter, object-capability design patterns have designed to enforce a wide range of security
properties. Murray and Grove [84] show how to create non-delegatable authorities, which sepa-
rate the right to invoke a capability from the right to grant the capability to another component.
Dimoulas et al. [24] implement contracts for restricting the delegation of capabilities that enforce
a similar property. Miller et al. [76] give a design pattern for associating objects with users that
allows programs to implement traditional access control mechanisms based on access control
lists. We conjencture that contracts implementing a similar pattern could be implemented in the

style of option contracts [22].

CORRECTNESS OF CAPABILITY-BASED SECURITY Preventing security abstractions from leaking
sensitive capabilities is a recognized challenge for capability-based security. In early capability-

based operating systems [56], the confinement problem [63] led to the combination of capabili-

52

ties and access control policies. The ICAP system [42] uses access control policies on capabilities
to limit their propagation in distributed systems. Dimoulas et al. [24] use contracts to enforce
similar policies in a capability-safe language.

Maffeis et al. [70] show that capability-safe languages such as Caja are suitable for enforcing
isolation properties as long as components do not share capabilities. Others have studied how to
verify the security of capability-based abstractions where components must communicate. For
instance, Politz et al. [91] use a type system to verify the confinement guarantees provided by
ADsafe. Murray et al. [83], Speissens [106], and Drossopoulou et al. [28] apply formal methods

to verify the security of specific object-capability design patterns.

53

A Secure Shell Scripting Language

Up to this point, we have demonstrated the advantages of contracts for capabilities only through
a series of small examples. In this chapter, we explore this connection further through the design
and implementation of a secure shell scripting language.”

A scripting language is an ideal test of an approach to developing secure software, since users
of commodity operating systems often need to execute untrustworthy software. In fact, this is the
common case: due to errors or malicious intent, software regularly does not behave as expected.
The Principle of Least Privilege (POLP) [98] requires that software should be given only the

authority it needs to accomplish its functionality. If adhered to, this principle (also known as the

"This chapter previously appeared in the Proceedings of the 111 USENIX Symposium on Operating
Systems Design and Implementation [81].

54

Principle of Least Authority) can help protect systems from erroneous or malicious software.

However, commodity systems and their secure tools fail to adequately support POLP. First,
it is difficult for the user of a commodity system to determine what authority a given piece of
software requires to execute correctly. Second, current mechanisms for limiting authority are
difficult to use: they are either coarse-grained or require significant changes to existing software,
and are often not available to all users [60]. For both of these reasons, users tend to execute
software with more authority than is necessary.

For example, consider scripts to grade homework submissions in a computer science course.
Students submit source code, and a script grade. sh is run on each submission to compile it
and run it against a test suite. The submission server must execute grade.sh with sufficient
authority to accomplish its task, but should also restrict its authority to protect the server from
student-submitted code and ensure the integrity of grading. At a coarse grain, the server should
allow grade. sh to access files and directories necessary to compile, run, and record the scores
of homework submissions, and deny access to other files or resources. This ensures, for example,
that a careless student’s code won't corrupt the server and a cheating student’s code won't modify
or leak the test suite. At a fine grain, each call to grade. sh to grade a single submission should
be isolated from the grading of other submissions. This ensures, for example, that a cheating
student cannot copy solutions from another submission.

Securinga script such as grade. shis difficult, as it requires balancing functional and security
requirements. To begin with, it is a priori unclear what authority grade.sh needs to execute
correctly. While the author of the script may know, the user must examine the code to try to
determine what authority it requires. If the user can identify the required resources, she can
use existing tools for sandboxing program execution (e.g., [52, 58, 67]) to achieve the coarse-
grained security requirements. However, it is difficult to use the same tools to enforce the fine-

grained security requirements described above. This is because achieving these requirements

55

requires that each invocation of grade. sh is given different privileges, i.e., it must be executed
in a differently configured sandbox. Configuring all of these sandboxes correctly is error prone,
so users often forgo fine-grained security and violate POLP.

To address these issues, we introduce the SHILL programming language. SHILL is a secure
shell scripting language with features that help apply POLP in commodity operating systems."
At the core of sHILL are declarative security policies that describe and limit the effects of script
execution, including effects of arbitrary programs invoked by the script.

These declarative security policies can be used by producers of software to provide fine-grained
descriptions of the authority the software needs to execute. This, in turn, allows consumers of
software to inspect the software’s required authority, and make an informed decision to execute
the software, reject the software, or apply a more restrictive policy on the software.} The sHILL
runtime system ensures that script execution adheres to the declared security policy, providing
a simple mechanism to restrict the authority of software.

Two key features enable sHILL’s declarative security policies: language-level capabilities for
system resources and contracts. SHILL scripts access system resources only through capabilities:
unforgeable tokens that confer privileges on resources. SHILL scripts receive capabilities only
from the script invoker; SHILL scripts cannot store or arbitrarily create capabilities. Moreover,
SHILL uses capability-based sandboxes to control the execution of arbitrary software. Thus, the
capabilities that a user passes to a SHILL script limit the script’s authority, including any programs
it invokes. SHILL’s contracts specify what capabilities a script requires and how it intends to use
them. sHILL’s runtime and sandboxes enforce these contracts, hence they serve as fine-grained,
expressive, declarative security policies that bound the effects of a script.

For example, Figure 24 shows a SHILL contract for a script to grade a single student submission

TSHILL is not an interactive shell, but rather a language that presents operating system abstractions
to the programmer and is used primarily to launch programs. Other languages currently used for this
purpose include Perl, Python, and the scripting portion of Bash.

56

(provide
[grade (-> [submission (and/c file? readonly/c)]

[tests (and/c dir? readonly/c)]
[working (dir/c (+create-dir +all))]
[grade-log (and/c file? writeable/c)]
[wallet ocaml-wallet/c]

void)])

Figure 24: SHILL contract for a grading script.

(corresponding to the grade. sh script described above). It is a declarative security specifica-
tion for the function grade, which takes 5 arguments: a read-only file submission (i.e., the
student’s source code), a read-only directory tests (containing the test suite), a “working direc-
tory” in which the script may create subdirectories with full privileges, a writeable file grade-
log for recording the student’s grade, and a “wallet” that provides sufficient capabilities to in-
voke the OCaml compiler. This contract serves two purposes: it clearly describes what grade
needs to execute correctly and it also provides guarantees about what grade may do when in-
voked. Given this contract, a user can be confident that grade satisfies the security requirements
described above, even though grade will compile and execute student-submitted code. Specif-
ically: grade will not read any other student’s submission; grade will not communicate over
the network (as it has no capability for network access); grade will not corrupt the test suite nor
write any files other than the grade log and subdirectories it creates within the working directory.
The implementation of grade (not shown) focuses solely on the functionality for grading, and
is not concerned with enforcing security requirements.

sHILL offers language abstractions for reasoning about the authority of pieces of software and

their composition. Specifically, sHILL (1) introduces a capability-based scripting language with

57

language abstractions (such as contracts and wallets) to use capabilities effectively, and (2) imple-
ments, on a commodity operating system, capability-based sandboxes that extend the guarantees
of the scripting language to binary executables and legacy applications. These language abstrac-
tions, and the enforcement of these abstractions, make it possible to manage authority and follow
POLP, even when using and combining untrusted programs.

The rest of this chapter is structured as follows. In Section 4.1 we present the design of SHILL.
Our implementation of sHILL in FreeBSD 9.2 is described in Section 4.2. We evaluate SHILL by
using it to implement several case studies, and measure the overhead of sHILL’s security mecha-

nisms. We present the evaluation results in Section 4.3. Section 4.4 describes related work.

4.1 DESIGN

SHILL aims to meet the following five goals:

1. Script users can control the authority of a script, i.e., what system resources it can access

or modify.

2. Script users can understand what authority a script needs in order to accomplish its func-

tionality.

3. Security guarantees of scripts apply transitively to other programs the script may invoke,

including arbitrary executables.

4. SHILL separates the security aspects of scripts from functional aspects, reducing the impact

of security concerns on the effort required to write scripts.
5. SHILL is compatible with commodity operating system abstractions.

To meet these goals, SHILL uses a combination of language design and mandatory access control-

based sandboxing.

58

Sandbox

Ambient script . Cap-safe script | \MAC: foo.txt: +read
e -
o Q executable
20
\ —* +read
SHILL T

Operating System

vnode for file foo.txt

Figure 25: SHILL in a nutshell.

In most scripting languages, scripts can access a resource (such as a file) using the resource’s
well-known global name. Access control is based on the user on whose behalf the script executes.
Thus, a script’s authority is ambient (i.e., it derives from the script’s execution context) [79], and
a script may access any and all resources that the invoking user may access. SHILL’S security is
based on capabilities instead of ambient authority.

There are two kinds of SHILL scripts: capability-safe SHILL scripts, and ambient SHILL scripts.
Capability-safe SHILL scripts play the same role as regular shell scripts, but do not have ambient
authority and must be given capabilities to access resources. Ambient SHILL scripts are used
to create the initial set of capabilities to give to capability-safe scripts. They do have ambient
authority, but are very restricted: ambient scripts can only create capabilities for system resources
and invoke capability-safe SHILL scripts.

Each capability-safe SHILL script comes with a contract that is enforced by the language run-
time. A capability-safe SHILL script can use the capabilities it possesses to access resources using

SHILL’s built-in functions, if allowed by the contract. sHILL scripts can also invoke arbitrary

59

executables in capability-based sandboxes. A capability-based sandbox is created with a set of ca-
pabilities, and enforces a mandatory access control policy that restricts the executable’s behavior
based on those capabilities and their contracts.

Figure 25 depicts the life cycle of a capability for a file named foo . txt. First, an ambient script
acquires a capability for the file from the operating system using the user’s ambient authority. This
capability is then passed to a capability-safe script via a contract, which restricts the privileges on
the capability to +read (i.e., the capability can be used only to read foo. txt, not to write to it,
etc.). The capability-safe script then runs an executable in a sandbox, granting it the capability

to read the file.

THREAT MODEL In sHILL’s threat model, some capability-safe scripts (and the executables they
invoke) are not trusted. However, their behavior is restricted by their contracts and the capabil-
ities they are given: a capability-safe script (and any executables it invokes) can access resources
only as permitted by its contract and the capabilities it possesses. Of course, the contract that ac-
companies a script may also be untrustworthy: a user should inspect the contract and understand
its security implications before passing capabilities to the script. The benefit of sHILL’s approach
is that it is much easier to inspect and understand the declarative contract than to examine the
script itself.

SHILL’s trusted computing base includes the operating system kernel and sHILL runtime. SHILL
does not explicitly defend against malicious scripts or executables that exploit security flaws in
the kernel or sHILL itself.

The rest of this section describes how sHILL’s design and features contribute towards these

goals, and provides an introduction to SHILL via several small examples.

60

4.1.1 CONTROLLING SCRIPT AUTHORITY

Ambient authority makes writing scripts easy: if a script needs to access a resource, it can simply
use the resource’s name to access it. However, ambient authority makes it difficult to understand
and control the potential effect of executing a script. First, the authority of a script is not easily
deducible from its code, a problem that is exacerbated when the script invokes other scripts or
executables. Second, commodity operating systems do not provide easy mechanisms to limit
authority of an execution context, for example, by allowing a user to temporarily restrict permis-
sions in a fine-grained way.

Authority in sHILL is controlled by capabilities. In order to access a resource, a SHILL script
must have a capability for that resource. SHILL scripts can only acquire capabilities as arguments
provided by the user, or by deriving them from other capabilities (e.g., using a directory capa-
bility to acquire a capability for a file in the directory). These restrictions, which correspond
to capability safety, lie at the heart of the security of sHILL scripts. Capability safety makes it
possible for users to control the authority of SHILL scripts they invoke (Goal 1).

Figure 26 presents a snippet of sHILL code that demonstrates how SHILL scripts use capabil-
ities. It defines a function find-jpg for recursively finding all the files with extension .jpg
within a given directory. Argument cur is a capability for either a file or a directory. In contrast
with standard scripting languages, cur is not a string that names a file, but is a capability that
denotes it, much like a file descriptor. If cur is a file capability and the name of the file ends with
.jpg, then the script uses the built-in function path to get the string for the path to the file,*
and appends it to the pipe or file capability out (lines 5-6).

If cur is a directory capability, then the built-in function contents is used to get the list

of names of children of cur. For each child, the script calls (Lookup cur name) to obtain a

#The library function has-ext? also uses path.

61

(define (find-jpg cur out)
(cond
; if cur is a file with extension jpg,
; output its path to out.
[(and (file? cur) (has-ext? cur "jpg"))
(append out (path cur))]
; if cur is a directory, recur on its contents
[(dir? cur)
(for ([name (contents cur)])
(let ([child (lookup cur name)])
(unless (error? child)
(find-jpg child out))))1))

Figure 26: SHILL script snippet to find . jpg files.

capability for the child (line 10), which is then used in a recursive call to find-jpg (line 12).

Conceptually, sHILL capabilities correspond to operating system representations of resources,
such as file descriptors, and built-in functions such as append and lookup are wrappers for the
corresponding system calls.

sHILL enforces capability safety by restricting the expressiveness of the scripting language.
While sHILL offers full-fledged language features and rich libraries, comparable to other script-
ing languages, the built-in functions for using resources require capabilities as arguments. In
addition, sHILL does not have mutable variables and capabilities are not serializable. This means
that SHILL scripts cannot store or share capabilities through memory, the filesystem, or the net-
work. For controlled sharing of capabilities, SHILL provides wallets, capabilities for packaging
and managing collections of capabilities. We discuss wallets further in Section 4.1.4.

SHILL scripts provide the same protection from confused deputy attacks [46] as traditional

capability systems. Furthermore, filesystem operations that produce new capabilities (such as

62

lookup) do not allow scripts to arbitrarily traverse the filesystem. For instance, a script cannot
use the capability for the current directory cur and (lookup cur "..") to obtain the parent

directory of cur.

4.1.2 CONTRACTS

Capability safety makes it possible to limit the authority granted to a sHILL script by carefully
selecting what capabilities to pass as arguments. Unfortunately, needing to pass capabilities ex-
plicitly makes it harder for script users to deduce how to use scripts and compose them to com-
plete more complicated tasks. At its core, this is a problem of defining the script’s interface: how
does the script communicate what resources it requires and how it will use those resources?®
sHILL addresses these issues by providing expressive, fine-grained and enforceable interfaces
for scripts (Goal 2) following the Design by Contract paradigm [71, 75]. Every function that a
SHILL script exports (i.e., makes available to users of the script) is accompanied by a contract that
describes the arguments the function expects and the result it returns. For example, the following

snippet is a contract for the find-jpg function from Figure 26:

(provide [find-jpg (-> [cur (or/c dir? file?)] [out file?] void)])

The provide keyword indicates that the function find-jpg is exported. The contract for the
function is (-> [cur (or/c dir? file?)] [out file?] void). Each function con-
tract has two parts: the precondition and the postcondition. The precondition of our example
states that find-jpg takes two arguments: a capability cur that is either a directory or a file
capability, and a file capability out. Following Unix convention, file capabilities include capa-

bilities for files, pipes, and devices. The postcondition void means that no value is returned.

STraditional shell scripting languages such as Bash or Python also suffer from these issues, but the use
of ambient authority masks them: scripts typically receive much more authority than needed.

63

The precondition of the contract above describes what kind of capabilities find-jpg needs,
but does not indicate how the function intends to use these capabilities. sHILL allows us to give

a more precise contract for find-jpg:

(provide
[find-jpg (-> [cur (or/c (dir/c +contents +lookup +path)
(file/c +path))]

[out (file/c +append)]

void)])
This version specifies not only what kind of capabilities the function consumes but also what
privileges it requires on these capabilities. Each privilege, such as +path or +contents, cor-
responds to an operation on a capability. A capability contract with a set of privileges restricts
what operations that capability can be used for.

Some operations on capabilities, such as Lookup, produce more capabilities. Capability con-
tracts can specify the privileges a script should have on these derived capabilities. For example,
privilege (+lookup +path +stat) indicates that any capabilities derived using the Lookup
operation should only have the +path and +stat privileges. When a privilege confers the right
to derive new capabilities but does not come with a modifier (such as the +lookup privilege in
the contract for find-jpg), the derived capability has the same privileges as its parent capability.

Each contract establishes an agreement between two parties: the provider of the value with the
contract and the value’s consumer. As part of the agreement, each party promises to live up to its
contractual obligations. In this way, a contract both describes a guarantee one party provides and
arequirement the other party demands. For function contracts, the consumer’s obligations are to
supply function arguments that satisfy the precondition, and the provider must produce a result
that satisfies the postcondition. For capability contracts, the provider agrees to provide a capa-
bility of the appropriate kind with at least the specified privileges while the consumer promises

to use the capability as if it has at most the specified privileges. For example, according to the

64

find-jpg contract, users of find-jpg must supply a file capability that permits the append
operation for the out argument, while find-jpg itself promises not to call other operations on
the capability, such as read.

The sHILL runtime checks whether parties live up to their obligations by monitoring execution
and checking that values are used in accordance with their contracts. For example, when find-
jpg is called with a capability for a directory and a capability for the output file, the body of
find-jpg does not receive the capabilities themselves. Instead, each contract wraps the under-
lying capability with a proxy. These proxies enforce the contracts for cur and out by intercepting
calls to operations on the capabilities and allowing them only if permitted by the contract. If the
body of find-jpg attempts to perform an operation that isn’t permitted—such as reading the
contents of out or unlinking cur—the proxy will indicate that a contract violation has occurred.
If a contract is violated, the SHILL runtime aborts execution and, to help with auditing and de-

bugging, indicates which part of the script failed to meet its obligations.

4.1.3 SECURING ARBITRARY EXECUTABLES

SHILL security guarantees must be completely enforced: even if a script calls other scripts or runs
arbitrary executables, its authority should be restricted to its capabilities, and it should meet its
contract obligations (Goal 3). When sHILL scripts invoke only other sHILL scripts, we achieve
SHILL’s security guarantees easily because of the language’s semantics. However, scripts also in-
voke executable programs.

To ensure that these programs cannot violate SHILL’s security guarantees, SHILL scripts may
only invoke executables inside a capability-based sandbox. When a sandbox is created, it is given
a set of capabilities. The sHILL sandbox limits the authority of the sandboxed executable to the
authority implied by the set of capabilities.

Scripts can invoke an executable in a sandbox by calling the built-in function exec. For ex-

65

ample, the following snippet executes the file jpeginfo in a sandbox with the arguments "-1"

and a given file:
(exec jpeginfo (list "jpeginfo" "-i" file)
#:stdout out #:extras (list libc libjpeg))

The exec function has two required arguments. The first is a file capability with the +exec
privilege. The second is a list of string arguments to provide to the executable. SHILL program-
mers can also provide as arguments to executables capabilities for files or directories instead
of string representations of their paths. In this case, the path to the given file is passed to the
executable as an argument. The exec function also takes some optional arguments, including
capabilities to use for standard input, output, or error (#:stdout out), and extra capabilities
needed by the program (#:extras (list libc libjpeg)). This set of extra capabilities
is often quite large. In Section 4.1.4, we describe abstractions to help manage capabilities for
sandboxes.

sHILL sandboxes enforce a capability-based mandatory access control (MAC) policy on the
sandboxed execution. For example, the sandbox for jpeginfo allows access only to resources
indicated by capabilities passed as arguments to exec (which, for the jpeginfo example above,
are the jpeginfo, file, out, libc, and 1ibjpeg files and directories). Moreover, if any of
these capabilities comes with a contract, the MAC policy further limits access to the resource
according to the capability’s contract.

This capability-based MAC policy is enforced in addition to the operating system’s discre-
tionary access control (DAC) policies: an operation on a resource by a sandboxed execution
is permitted only if it passes the checks performed by the operating system based on the user’s
ambient authority and is also permitted by the capabilities possessed by the sandbox. Note that
sandboxed executables never possess capabilities that allow them to use ambient authority to

circumvent the MAC policy. For example, no sandboxed executable has a capability to unload

66

kernel modules, including the module that enforces the MAC policy. Section 4.2.2 describes

how we implement capability-based sandboxes using the TrustedBSD MAC framework.

4.1.4 WRITING SHILL SCRIPTS

SHILL’s security benefits come at the cost of extra effort to write scripts. Nonetheless, we strive to
make it easy to write SHILL scripts while obtaining stronger security guarantees than traditional
shell scripting languages. To make it easier to write scripts, SHILL offers security abstractions

such as capability wallets and pushes security concerns to the interfaces between scripts.

SECURITY ABSTRACTIONS

SHILL requires that any access of a protected resource requires an appropriate capability. How-
ever, even simple executable programs require access to a surprising number of files. For exam-
ple, executing cat in a sandbox requires providing eight capabilities to libraries and configura-
tion files in addition to capabilities for the executable itself and the input and output.

Consider a sHILL script that executes cat in a sandbox. One can imagine a contract that
requires a separate argument for each of the eight capabilities that cat requires. While precise,
such a contract imposes a significant burden on both the script writer (since the need for these
capabilities will be exposed in the interface for the script) and the script user (who will need to
supply these capabilities individually).

Another possibility is a contract that takes important capabilities separately (e.g., for the ex-
ecutable and the input and output) and takes all other capabilities in a list. Although succinct,
this contract burdens the script’s user, who has no idea what capabilities should be in this list.

We introduce capability wallets as a mechanism to automate and simplify the discovery, pack-
aging, and management of capabilities that sandboxes need to run executables. Conceptually,

a capability wallet is a map from strings to lists of capabilities. To reduce the burden on script

67

(provide
[jpeginfo (-> [wallet native-wallet?]

[out (file/c +write +append)]
[arg (file/c +read +path)]
void)])

(define (jpeginfo wallet out arg)
(let ([jpeg-wrapper (pkg-native "jpeginfo" wallet)])
(jpeg-wrapper (list "-i" arg) #:stdout out)))

Figure 27: Executing jpeginfo in a sandbox using wallets.

writers, SHILL provides wallet contracts, which describe contracts for the capabilities associated
with individual keys or groups of keys. To reduce the burden on script users, SHILL provides
library functions to automate the collection and packaging of capabilities into wallets.

Figure 27 shows a script that uses a capability wallet to create a sandbox for the program
jpeginfo. The first argument to the jpeginfo function has the contract native-wallet?
(line 2). A native-wallet isa particular kind of capability wallet that can be built using func-
tions from sHILL’s standard library. It collects together the capabilities needed to invoke exe-
cutables and can be used with other functions from the sHILL standard library that present a
familiar path-based interface for identifying and running executables. The capabilities in a wal-
let are derived from capabilities the user explicitly grants to the script. Thus despite its path-based
interface, a native wallet is still capability safe.

This script uses one of the standard library functions, pkg-native, to create a wrapper con-
taining all of the capabilities needed to run the jpeginfo executable in a sandbox (line 7). The
script then calls the wrapper, supplying the executable arguments and input and output capabil-
ities (line 8).

sHILL’s standard library comes with a rich collection of functions that construct and manipu-

68

late wallets, wallet contracts and wallet-derived sandboxes. Section 4.2.1.4 presents these utilities

in further detail.

PUSHING SECURITY TO INTERFACES

SHILL’s contracts allow the programmer to separate the security specification of a script from
the implementation of its functionality (Goal 4). The sHILL runtime ensures that contracts are
enforced, removing the need for defensive code that checks and protects the use of capabilities.
Consider the find-jpg function from Figure 26: the implementation is simple, and the security
guarantee is provided by its contract. This separation makes it possible to strengthen or relax
a script’s security guarantees by modifying its contract. Indeed, in Section 4.1.2 we saw two
different contracts for the find-jpg function, one of which provides a more precise security
guarantee.

SHILL’s contract system is rich and expressive, allowing precise specifications of security guar-
antees. For example, users can define their own contracts by creating contract combinators and
user-defined predicates written in SHILL itself.

SHILL’s contracts can also be used to write security specifications that provide different guar-
antees to different script users. Consider the script in Figure 28. This script recursively finds files
and performs an action on these files. (It is more general than the find-jpg script of Figure 26.)
The function f1ind takes three arguments: a file or directory capability cur, a function filter
that is used to select files, and a function cmd to apply to all selected files. Lines 6-14 imple-
ment find’s functionality. Note that this code is straightforward, and does not directly address
security concerns.

Lines 1-4 define the contract for find, using a bounded polymorphic contract. The poly-
morphic contract declares that for any contract X, the function find can be called with ar-

guments cur, filter, and cmd such that cur satisfies contract X, filter satisfies contract

69

(provide
[find (bounded-> ([V X <: (cap/c +lookup +contents)])
[cur X] [filter (-> X boolean?)] [cmd (-> X void)]
void)])

(define (find cur filter cmd)
(cond
[(and (file? cur) (filter cur))
(cmd cur)]
[(dir? cur)
(for ([name (contents cur)])
(let ([child (lookup cur name)])
(unless (error? child)
(find child filter cmd))))]))

Figure 28: A find script with a polymorphic contract.

(-> X boolean?) (i.e., filter isa function that expects a value that satisfies X and returns

aboolean), and cmd satisfies contract (-> X void) (i.e., cmd is a function that expects a value

that satisfies X and returns no value).

The polymorphic contract is bounded because the contract X on capability cur that the caller

provides must have at least the privileges +lookup and +contents. Moreover, the contract

requires that find can use only the +lookup and +contents privileges of the cur argument

or derived capabilities, even though contract X may specify more privileges. Importantly, the

contracts for arguments filter and cmd allow these functions to use all of the privileges that X

specifies. In essence, the contract of find dynamically seals [82] the argument cur as it flows

into the body of the function through contract X, and unseals it as it flows out to the functions

filter and cmd.

The contract on find allows clients to use find in different ways. For example, one client

70

may use it with a filter that examines file creation times (which requires the +stat privilege).
Another client may use find with a filter that inspects a file’s name (which requires +path,
but not +stat). For both clients, the contract guarantees that the implementation of f1ind itself
cannot use either the +stat or +path privileges, even though it invokes the functions filter

and cmd.

4.1.5 INTERACTION WITH AMBIENT AUTHORITY

Figure 26, Figure 27, and Figure 28 show SHILL scripts that consume and use capabilities. But
where do capabilities come from? sHILL is intended for use with commodity operating systems,
and so we must provide a mechanism to transition from the ambient world of the operating
system to SHILL’s capability-safe world (Goal 5).

To that end, in addition to the capability-safe scripts we have described so far, users of SHILL
scripts write ambient scripts which inherit the authority of the invoking user and are not capabil-
ity safe. Ambient scripts are used to create capabilities and pass them to functions that capability-
safe scripts provide. Consequently, the language of ambient scripts is extremely restricted: am-
bient scripts contain straight line code that can import capability-safe scripts, create capabilities
for resources using file paths and other global names, and call functions exported by capability-
safe scripts. Ambient scripts are brief and delegate all interesting tasks to the capability-safe
scripts they import. Also, capability-safe scripts cannot import ambient scripts, which ensures
that capability-safe scripts cannot use ambient scripts to obtain additional capabilities. Ambi-
ent scripts must reason carefully about their interaction with untrusted scripts. Contracts and
capabilities help with this.

Figure 29 shows an ambient script that creates appropriate capabilities and then invokes the

jpeginfo function from the script in Figure 27. The annotation #1lang shill/ambient on

71

#lang shill/ambient

(require shill/native)
(require "jpeginfo.cap™)

(define root (open-dir "/"))

(define wallet (create-wallet))

(populate-native-wallet wallet root
"~ /Downloads/jpeginfo"
"/1lib:/usr/local/lib"
pipe-factory)

(define dog (open-file "~ /Documents/dog.jpg"))
(jpeginfo wallet stdout dog)

Figure 29: Ambient script to call jpeginfo.

line 1 indicates that this is an ambient script.? Line 3 loads a sHILL library script that helps create
capability wallets. Line 4 loads the capability-safe script from Figure 27.

Lines 8-11 create an appropriate capability wallet to run jpeginfo by calling the trusted
standard library function populate-native-wallet. Line 13 creates a capability for the file
~/Documents/dog. jpg. The capability has all privileges that the invoking user is allowed for
this file; when the capability passes through a capability contract, it loses all privileges except
those stated in the contract. Line 14 invokes jpeginfo with the capability wallet, a capability

to standard out, and the capability to dog. jpg.

I Capability-safe scripts have the annotation #1lang shill/cap on the first line; we omitted this an-
notation in Figure 26, Figure 27, and Figure 28.

72

4.2 IMPLEMENTATION

We have implemented a prototype of sHILL as a kernel module and set of userspace tools for
FreeBSD 9.2. The userspace tools include the sHILL compiler, runtime, and standard library. The
kernel module implements capability-based sandboxes and provides capability-safe versions of

several POSIX system calls.

4.2.1 LANGUAGE

We implement the sHILL language as an extension to Racket [38] using Racket’s macro system
and tools for building languages [119]. Prototyping SHILL in this way allows us to use Racket
functionality where it meets our security requirements. In particular, we used Racket’s contract
mechanism to implement SHILL contracts.

A distinguishing feature of SHILL is capability safety: access to resources occurs only through
capabilities, and creation of capabilities is limited. To achieve capability safety at the language
level, we (1) provide language-level capabilities and capability contracts; (2) restrict the expres-

siveness of the language; and (3) provide a capability-based language runtime for sHILL.

CAPABILITIES AND THEIR CONTRACTS

Capabilities in the sHILL language are object-like values that encapsulate low-level capabilities
such as file descriptors or sockets. Each operation on a capability is implemented by calling the
corresponding operation on the low-level capability. Different kinds of capabilities support dif-
ferent operations. For example, supported operations on files and pipes include reading, writing,
and changing modes. Directories also have capabilities for listing, adding, or removing directory
entries. Each operation has a corresponding privilege that can be present or absent on a given ca-

pability. In total, sHILL has twenty-four different privileges for filesystem capabilities and seven

73

different privileges for sockets. Socket privileges are further refined by connection type.

We chose privileges and operations to align closely with the operations that our capability-
based sandbox can interpose on, so that we can ensure that giving a capability to a sandbox
conveys the same authority as giving that capability to a sHILL script. There are two kinds of
SHILL capabilities that do not encapsulate a system resource directly: the pipe-factory and
socket-factory capabilities. These capabilities encapsulate, respectively, the right to create
new pipes or sockets. The pipe-factory capability has a create operation that returns a
pair of pipe ends. Each pipe end is a file capability. In our prototype implementation, SHILL
scripts cannot create or manipulate sockets directly (which can be addressed by adding built-in
functions for socket operations to the language). We do restrict a sandbox’s permitted socket
operations: a sandbox must possess a socket-factory capability to be allowed to create and
use sockets.

We implement SHILL contracts using Racket contract combinators [36, 37] that create prox-
ies [113] for capabilities, allowing us to interpose on operations and check privileges before al-
lowing an operation. These proxies also store information about the privilege restrictions each

contract imposes.

RESTRICTING THE SHILL LANGUAGE

To achieve capability safety in sHILL, we carefully choose which language features and libraries
of Racket are available in sHILL. We allow access to certain Racket libraries, such as the regular
expression library, but prevent access to all others, including Racket’s system library and Racket’s
macro system. SHILL scripts are allowed to import only sHILL capability-safe scripts.

The ambient sHI1LL language (see Section 4.1.5) has further restrictions: it may not do anything
other than import capability-safe SHILL scripts, create strings and other base values, define (im-

mutable) variables, and invoke functions. However, unlike the capability-safe sHILL language, it

74

Resource Language Sandbox

Directories, files, links Capabilities Capabilities
Pipes Capabilities Capabilities
Character Devices Capabilities Capabilities'
Sockets (IP,Unix) Capabilities Capabilities
Sockets (other) Denied Denied
Processes ulimit* Confinement
Sysctl Denied Read-only
Kernel environment Denied Denied
Kernel modules Denied Denied
POSIX IPC Denied Denied
System V IPC Denied Denied

Figure 30: System resources and how each is protected in the sHILL language and

capability-based sandboxes.
t: In our prototype, character devices are only partially controlled by capabilities, see Section 4.2.2.3.

1: sHILL allows calls to the exec function to specify ulimit parameters for the child process.

may create capabilities using ambient authority.

CAPABILITY-BASED RUNTIME

We implemented a capability-based language runtime for sHILL that provides operations to ac-
cess files and other resources through file descriptors. (The Racket libraries for accessing files
and other resources rely on ambient authority, and are thus not suitable for our use.) File de-
scriptors provide unforgeable tokens that can serve as low-level capabilities for directories, files,
links, pipes, sockets, and devices. Our capability-based runtime provides wrappers for the *xat
family of system calls which provide a file-descriptor based interface to common operations like
opening, reading, and writing files. Our runtime further restricts these system calls by requiring
that arguments that specify sub-paths contain only a single component. For example, the path-

name argument to openat may be alice but not alice/dog.jpgor ../bob. Our runtime

75

also provides wrappers for standard system calls which can be used by sHILL’s ambient language

to create capabilities for system resources.

NEW SYSTEM CALLS Most but not all FreeBSD system calls that manipulate the filesystem have
a version that consumes file descriptors rather than paths. The linkat, unlinkat, and re-
nameat system calls use file descriptors to designate target directories, but rely on paths to des-
ignate files. Thus, a call to linkat can not be guaranteed to link to the correct file without
risking a time-of-check-to-time-of-use vulnerability. Our kernel module adds three system calls
to address these deficiencies: flinkat, which installs a link to a file in a directory given file
descriptors for both the file and the directory; funlinkat, which takes a name and file descrip-
tors for a file and a directory and removes the link at the given name if it refers to the file; and
frenameat, which is similar to funlinkat but also installs a link to the file in a target direc-
tory. The module also provides a version of mkdirat that returns a file descriptor for the newly
created directory.

We also add a new path system call that attempts to retrieve an accessible path for a file
descriptor from the filesystem’s lookup cache. sHILL uses this system call to provide a relatively
robust mechanism to translate SHILL capabilities into paths to provide as arguments to sandboxed
executables. If the path system call fails, SHILL uses the last known path at which the file was
accessible.

Our prototype implementation of sSHILL does not provide support for all system resources.
Interaction with resources that do not correspond to capabilities is either restricted or denied
entirely. Figure 30 lists system resources and how SHILL controls access to these resources in the
language and in capability-based sandboxes. There is no fundamental obstacle to providing ca-
pability support for all resources, though doing so would require additional modifications to the

system call interface. For example, we would need to provide a low-level capability for processes,

76

similar to Capsicum’s process descriptors [126].

STANDARD LIBRARY

sHILL’s standard library provides a number of capability-safe scripts that help programmers write
sHILL scripts. The filesys script provides capability-based functions that emulate common
tasks such as resolving paths and symlinks. The o script provides printf-like wrappers around
write and append for formatted output. The contracts script provides abbreviated defini-
tions of common contracts. For example, a programmer can specify the contract readonly/c
rather than the more verbose

(or/c (dir/c +read-symlink +contents +lookup +stat +read +path)
(file/c +stat +read +path))

CAPABILITY WALLETS Recall that capability wallets are maps from strings to lists of capabilities
that help automate and simplify the discovery, packaging, and use of capabilities to invoke ex-
ecutables in sandboxes. sHILL provides functions for creating and using capability wallets. For
example, the native script in the standard library provides two functions for using native wal-
lets to invoke executables (as in Figure 27 and Figure 29): populate-native-wallet and
pkg-native.

Function populate-native-wallet helps create a native wallet. Its arguments include
path specifications for where to search for executables and libraries (i.e., colon-separated strings,
analogous to environment variables $PATH and $LD_LIBRARY_PATH), and a directory capabil-
ity to use as a root for the path specifications. In addition, it takes a map (of strings to lists of
strings) from known libraries to the file resources those libraries depend on. Function populate-
native-wallet uses the directory capability to resolve the path specifications (i.e., converts
the lists of strings to lists of capabilities), and places these capabilities in a native wallet. It also

resolves the known dependencies (i.e., the map from known libraries to the file resource path

77

names) into a map from strings to lists of capabilities, and places the resolved map into the na-
tive wallet.

Function pkg-natve takes a native wallet and a file name (of an executable file) and searches
the path capabilities in the native wallet for a capability for the executable. The function then
invokes 1dd to obtain a list of libraries that the executable depends on, and searches the library-
path capabilities for capabilities for the required libraries. Once these capabilities are gathered,
pkg-native uses the map of known dependencies to gather additional capabilities needed to
run the executable. Function pkg-native then returns a function that encapsulates a call to
exec with all capabilities needed to run the executable. Figure 27 shows an example script that

uses pkg-native.

4.2.2 CAPABILITY-BASED SANDBOX

The sHILL sandbox is implemented as a policy module for the TrustedBSD MAC Framework [127]
(hereafter, “the MAC framework™). The MAC framework allows FreeBSD’s access control mech-
anisms to be extended with third-party mandatory access control policies by mediating access to
sensitive kernel objects and invoking access control checks specified by third-party policy mod-
ules. The framework also provides a policy-agnostic mechanism for attaching security labels to

kernel objects. Mechanisms with similar functionality are available on Linux and Apple’s OS X.

SESSION LIFECYCLE

Each process executing in a sHILL sandbox is associated with a session. Processes in the same
session share the same set of capabilities and can communicate via signals. Processes spawned
by a process in a session are by default placed in the same session. However, sessions are hi-
erarchical: a sandboxed process inside session S; can spawn a process inside a new session S,,

which has fewer capabilities that S;. This allows sHILL-aware executables to further attenuate

78

/ (root directory) d / (root directory) ’
[cw

usr .home | usr +lookup| home |
+lookup with {+read}| alice | +Iookup

dog.jpg

s
+lookup with {+read}| alice | +Iookup

4

Figure 31: Resolving system call open("../alice/dog.jpg", O_RDONLY) in a
capability-based sandbox. Left: the session has privileges for /home/alice and
/home/bob, but not /home, so the operation fails. Right: the session also has a
lookup privilege for /home, so the operation succeeds and the lookup privilege on
/home/alice is propagated to /home/alice/dog.jpg.

their privileges.

New sessions are created by invoking the system call shill_init, which creates a session
and associates it with the current process. A new session initially has no capabilities of its own.
Capabilities possessed by the parent session can be granted to the new session until the process
invokes the shill_enter system call. Once shill_enter is called, the session allows only

operations permitted by capabilities it was granted explicitly.

FrROM cAPABILITIES TO MAC LABELS

Each system resource protected by a SHILL capability corresponds to an underlying kernel object:
a filesystem vnode, pipe, device, or socket. Using the MAC frameworK’s ability to attach labels to
kernel objects, sHILL labels these kernel objects with a privilege map: a map from sessions to sets
of privileges. A privilege map records the privileges that each session has for the given kernel
object. Privileges in the privilege map correspond directly to privileges of SHILL capabilities.

When a sHILL script calls exec, the SHILL runtime sets up a sandbox by forking a new process,

79

creating a new session, and granting the session the capabilities passed to exec. It then calls
shill_enter before transferring control to the executable.

When a sandboxed process invokes a system call relevant to a resource protected by sHILL,
we use the privilege map for that resource to check whether the process’s session has sufficient
privileges for the operation. If there are insufficient privileges, the system call aborts with an

error but the process is otherwise allowed to continue.

DERIVED CAPABILITIES In the sHILL language, some operations on SHILL capabilities yield de-
rived capabilities. For example, using a directory capability, a script might obtain capabilities for
children of the directory, or might obtain a capability for a new file created in that directory. In
the sandbox, we track these derived capabilities by updating privilege maps in response to oper-
ations on kernel objects. To enable this, we extended the MAC framework with two additional
hooks: mac_vnode_post_lookup and mac_vnode_post_create. These entry points are
invoked after a lookup or create operation completes successfully, and allow the sHILL policy
module to update the privilege map on the resulting vnode. For example, if session S has priv-
ilege (+lookup +stat +path) on a vnode for a directory d, and a process in that session
successfully invokes system call openat(d, "child", flags), then the sHiLL policy mod-
ule updates the privilege map for the vnode for file child to add privileges +stat and +path

for session S.

PaTH TRAVERSAL To achieve fine-grained confinement in the filesystem, SHILL scripts are not

>

permitted to follow the “. .” entry of a file or directory capability. However, simply disallowing
use of “. .” in SHILL’s capability-based sandboxes would break many existing programs. Instead,
the sandbox allows any lookup operation on a directory if the session has the + Lookup privilege,

but only propagates privileges when the lookup would have been permitted in the sHILL language,

80

that is, when the directory entry requested is not «. .”%

ExampLE Consider a sandboxed process attempting to call open("../alice/dog.jpg",
O_RDONLY) from the current working directory /home/bob. This system call invokes a series of
low-level Tookup operations on filesystem objects to resolve the path and create a file descriptor
for the designated resource.

Figure 31 depicts the process of completing these operations in a sHILL sandbox. Shaded
boxes around nodes in the file system denote privileges held by the current session. The current
working directory is indicated with a solid arrow. Dashed arrows represent low-level lookup
operations, and a dashed box around a node represents privileges propagated in response to a
lookup operation.

In the left diagram, the current session has a capability to the vnode corresponding to the
directory /home/alice and a capability to the current working directory. The first operation

>

(lookup “..” in /home/bob) is permitted because the process has the +Lookup privilege, but
privileges are not propagated to the vnode for /home. Thus, the second operation (lookup alice
in /home) fails because the session does not have the necessary privileges. The open system call
returns EACCES to indicate that the process had insufficient privileges.

The right diagram considers the same scenario, but where the session also has a +1ookup
privilege to the directory /home. In this case, the session is permitted to look up alice in
/home. The final operation (lookup dog.jpg in /home/alice) also succeeds. These two
lookups propagate privileges from the parent nodes to the results of the lookup. Looking up

dog.jpgin /home/alice grants the session the privilege +read on the vnode representing

dog. jpg, since the session had privilege (+1lookup +read) on the vnode for /home/alice.

"We also do not propagate privileges when the directory entry is “.”, since this can lead to privilege
amplification. For example, if session S has only the privilege (+lookup +stat) on directory d, then
calling openat(d, ".", flags) would give S the +stat privilege on d.

81

Thus, the call open("../alice/dog.jpg", O_RDONLY) succeeds.
Note that unlike sHILL scripts, sandboxed executables are vulnerable to confused deputy at-
tacks if they allow clients to specify resources with paths rather than, e.g., file descriptors. How-

ever, the authority of the sandboxed execution is still limited by the capabilities it is granted.

AVOIDING PRIVILEGE AMPLIFICATION In the sHILL language, capabilities both designate re-
sources and confer privileges. As a consequence, it is possible to have two separate capabilities to
the same resource with different privileges. These separate capabilities may confer less privilege
than a single capability with the combined privileges. For example, consider a pair of capabili-
ties to create a network socket, one with sufficient privileges to send but not receive messages at
a particular port, and one with sufficient privileges to receive but not send messages on the same
port. Because only a single socket can be bound to a port, a program with these capabilities must
choose to either send or receive messages.

Since in the sHILL language, scripts cannot combine capabilities, possessing multiple capa-
bilities for the same resource does not lead to privilege amplification. In the capability-based
sandbox, however, processes designate resources using the traditional POSIX API and autho-
rization decisions are based separately on the capabilities associated with the target object. Thus,
to avoid privilege amplification the sandbox must prevent two separate capabilities to the same
object from being combined to allow additional operations.

For network sockets, the privilege map is actually a map from sessions to sets of sets of priv-
ileges. That is, for privilege map m, if P € m(S), then P is a set of privileges that is consistent
with how session § has used the socket so far. For example, if session S has privileges to create
read-only sockets or write-only sockets, then when it creates a new socket, the privileges for the
session m(S) will contain the sets {+read} and {+write}, asitis not yet clear whether the process

intended to create a read-only or write-only socket. When session S attempts a send or receive

82

operation, if P is not consistent with the attempted operation, it is removed from the privilege
map. In this way, the sandbox lazily discovers the “intended” set of privileges for the resource.
For file system operations that create new objects (e.g., creating new files or directories), SHILL
requires that a session is never granted conflicting privileges to the same object. For example,
if session S currently has privilege (+create-file +read +stat +path) foradirectoryd,
(i.e., the privilege to create read-only files), and due to alookup from the parent directory we want
to propagate privilege (+create-file +write), we would not merge these privileges, i.e.,
we would not give S the privilege (+create-file +write +read +stat +path). While
more sophisticated techniques to track privileges are possible, we have found that this conser-
vative approach to prevent privilege amplification works well in practice, and does not break

functionality of any of our case studies.

PROCESS INTERACTION The sHILL language provides limited support for operations on pro-
cesses: SHILL does not have capabilities to control the creation of processes, process synchro-
nization, interprocess communication, etc.

Within capability-based sandboxes, we enforce a simple security policy for operations related
to processes: processes in a session can only interact with processes in the same session or a
descendent session. A process in a sandbox cannot debug, send signals to, or wait for a process

outside of its session.

DEBUGGING SHILL provides several tools for debugging processes running in sHILL sandboxes.
First, there is a command-line tool for running a single shell command with capabilities specified
in a policy file. Second, for all sHILL sandboxes, logging can be enabled and viewed by privileged
users. The log records all of the capabilities and privileges granted during a session in addition to
all operations that were denied because of insufficient privileges. Using the command-line tool,

a session can be created in debugging mode, which automatically grants the necessary privileges

83

if an operation would fail. We found that running programs in a debugging sandbox and then
viewing the logs was a useful starting point for identifying necessary capabilities to provide to a
SHILL script. However, as we developed additional standard library support to run common ex-
ecutables, this became less necessary. In most cases, the utilities in the standard library automate

the retrieval and collection of capabilities needed to run an executable.

LiMITATIONS

SHILL’s capability-based sandboxes rely on the MAC framework to implement access control
checks based on capabilities. Thus, the granularity of the MAC framework’s mechanism deter-
mines the granularity at which our sandboxes protect resources. For example, the MAC frame-
work exposes a single entry point for operations that write to filesystem objects, so we cannot
distinguish write and append operations. Conservatively, we enforce that to write (or append)
to a file, a session must have both the +write and +append privileges for the file. (Note that
in SHILL scripts, privileges can be enforced at fine granularity, since capability safety in scripts
relies on language abstractions, not on the MAC framework.)

The MAC framework does not interpose on read or write operations on character devices.
Thus, while the sHILL language exposes stdin, stdout, and stderr as file capabilities and en-
forces restrictions on how they can be used, sandboxed processes can bypass these restrictions if
one of these capabilities abstracts a pseudo-terminal or other device. This limitation is not funda-
mental and can be resolved by adding entry points to the MAC framework around unprotected

operations. It can be mitigated by not granting capabilities to such devices to sandboxes.

4.3 EVALUATION

We evaluate the expressiveness of sHILL through four case studies: a grading script for a pro-

gramming assignment, a package management script for the GNU Emacs editor, sandboxing

84

the Apache web server, and a find and execute task similar to the example in Section 4.1. We
measure the performance of sHILL via case studies and microbenchmarks. Our evaluation in-
dicates that (1) sHILL is a practical security tool for typical system tasks}, (2) SHILL can provide
fine-grained security guarantees when scripts are used to compose untrusted software and, (3)

its performance cost is pay-as-you-go, i.e., weak security guarantees incur little overhead.

4.3.1 CASE STUDIES

GRADING SUBMISSIONS We used SHILL to securely grade student submissions written in OCaml
for an undergraduate programming languages course. As a baseline, we wrote a 61-line Bash
script that compiles the OCaml source code of each submission and runs the compiled program
against a test suite. Results of executing student submissions against the test suite are recorded
in a grading directory, one file per student.

With minimal effort, we secured this Bash script in a sHILL sandbox. The capability-safe script
that executes the Bash script in a sandbox is 22 lines, of which 14 are the contract for the script.
The ambient script that invokes capability-safe script is also 22 lines. The contract guarantees
that the grading script can at most: read files in directories containing student submissions and
tests; create, modify, and delete new files in a working directory and the output directory; and
access the system resources needed to run the compiler and compiled programs.

To demonstrate the finer-grained guarantees of SHILL, we also wrote a version of the grading
script exclusively in sHILL. The capability-safe grading script is 78 lines of code, of which six
are the script’s contract. The ambient script that invokes it is 16 lines. The sHILL script provides
all the security guarantees of the sandboxed Bash script, and also ensures that while grading a
student’s submission, no other student’s submission, working-directory files, or results file can
be accessed.

The capability-safe SHILL script was developed by manually translating and modifying the

85

original Bash script. String-based references to files were replaced with appropriate capabili-
ties. Calls to programs like gmake, diff, and ocamlrun were replaced with calls to the sHILL
standard library to package and execute those programs. To enable this, the ambient script cre-
ates a native-wallet initialized with a standard PATH and LD_LIBRARY_PATH. Contracts
for the capability-safe SHILL script ensure that each student’s grading file is isolated from other
students and that students’ programs can't directly modify their grade file. These fine-grained
guarantees—which the Bash script does not provide—are achieved by ensuring that the contract
on the grading directory allows only the creation of new append-only files, and the functions that
compile and execute a student’s submission are given no capabilities to other students’ grading
files.

In developing this script, we debugged several cases where the script had too few privileges to
run successfully. In one case, we wrote too restrictive a contract for the submissions directory,
forgetting the +lookup privilege. The resulting contract failure indicated which argument had
insufficient privileges. After verifying that this privilege was necessary and did not compromise
the security guarantees, we fixed the script. We encountered two issues with sandboxed exe-
cutables. First, the wallet used to launch executables was missing some necessary capabilities:
when trying to compile students’ submissions, ocamlc reported that it was unable to read a file
in /usr/local/lib/ocaml. Investigating, we realized that OCaml searches for libraries in
this directory. Adding the directory to the wallet as a dependency for OCaml executables fixed
the issue but revealed another: ocamlyacc could not write to /tmp. After adding a capability
to /tmp when invoking gmake, the script ran successfully. To ensure isolation between differ-
ent invocations of gmake, we used a contract on the /tmp capability to specify that sandboxed

processes can only read, modify, or delete files or directories they create.

86

PACKAGE MANAGEMENT We used SHILL to write an installation script for GNU Emacs (sim-
ilar to what may be found in a package manager). The script provides functions to download,
compile, install, and uninstall Emacs. Unlike a typical package manager, the script has a detailed
security interface for each function. For example, only the function for downloading the source
code can access the network, and only the install function can write to the intended installation
directory. In addition, the install function is restricted from reading, altering, or removing any
existing files in the installation directory, and the uninstall function’s contract gives a list of files
that it is permitted to remove. The package manager comprises 114 lines of ambient code, and

91 lines of capability-safe code, of which 45 specify contracts.

ApACHE WEB SERVER To showcase how sHILL handles networking applications, we used SHILL
to develop a sandbox for the Apache webserver, version 2.2. We tested the performance of the
web server by using the Apache Benchmark tool to download a 50MB file served by Apache five
thousand times using up to 100 concurrent connections. In addition to its required libraries,
the script’s contract gives the webserver read-only access to configuration files and web content
directories, the ability to create and use sockets, and write-only access to log files. The ambient

script is 27 lines, and the capability-safe script is 30 lines, of which 20 lines are contracts.

FIND As another example of how programmers can use SHILL to gradually strengthen the guar-
antees of scripts, we developed two versions of a sHILL script for a find and execute task. Our
scripts find all files with extension . c in the BSD source tree that contain the string “mac_", the
prefix on entry points for the MAC framework. Completing this task requires visiting 57,817
files and invoking grep on the 15,376 files with extension . c.

The simpler version is a SHILL script that launches a sandbox for the command find /usr/src
-name "x.c" -exec grep -H mac_ {} \;. The ambient script is 11 lines and calls a 27-

line capability-safe script, of which 5 lines are contracts. The contract ensures that the sandbox

87

Grading Emacs Download Untar Configure Make Install Uninstall Apache Find
125 - 5
Zi10040ma® opad
: %] e,
B 25—
0- oma lloma [[Om4 om4A lona omaA

Figure 32: Performance of sHILL for a variety of tasks. Running time is given for the
“Baseline” (<), “sHILL installed” (o), “Sandboxed” (A), and “sHILL version” (O) config-
urations. 95% confidence %intervals are indicated by vertical bars. Bars may be hidden
by %plotting symbols when confidence intervals are small. Configurations that differ
significantly from “Baseline” are filled (e.g., H).

has access only to /usr/src and files necessary to run find and grep.

The second version uses the find function (Figure 28) to find files with the extension . c and
invokes grep in a sandbox for each matching file. In addition to the guarantees of the previous
version, this script provides the fine-grained guarantee that the files that grep operates on are
exactly the files selected by the find function. Note that our first script does not provide this
guarantee: paths passed to grep may resolve to different files. The ambient script is 9 lines, and

the capability-safe script is 60 lines, of which 11 are contracts.

4.3.2 PERFORMANCE ANALYSIS

Our prototype implementation focuses on providing fine-grained security guarantees, and we
have not yet optimized performance. However, to verify that the performance costs of sHILL
are commensurate with the security guarantees, we use the case studies as benchmarks. We also
develop benchmarks for sub-tasks of the Emacs installation script (download, untar, configure,
make, make install, make uninstall). For each benchmark, we derive a command line invocation

to achieve the same task as the case study outside of sHILL (if such a command was not already

88

part of the case study).

We measured the performance of each benchmark in three different configurations. The
“Baseline” configuration executes the command on FreeBSD without the sHiLL kernel module
installed. The “sHiLL installed” configuration executes the command with the kernel module
installed (but not active). The “Sandboxed” configuration uses a SHILL script to create a sandbox
for the command. Where applicable, we also executed a “SHILL version” of the case study that
replaces the command.

We ran each configuration of each benchmark 50 times and computed the mean time to com-
pletion along with a 95% confidence interval. The performance measurements were conducted
on a six core, 3.33GHz Xeon server with 6GB of RAM running FreeBSD 9.2. Figure 32 presents
the results. We compare performance with “Baseline” using a two-sided t-test on the difference
in mean run time. Statistical significance was determined at the o.05 level after a Bonferroni
correction for multiple hypothesis testing within each benchmark.

First, observe that the overhead of our system for programs that are not secured by sHILL
scripts is negligible. Second, the slowdown for “Sandboxed” and “sHILL version” configurations
ranges from negligible to 1.21 X, except for a few extreme cases: the “Sandboxed” configurations
of the Download and Uninstall benchmarks and the “sHILL version” of the Find benchmark.
These tasks are 1.73 X, 6.61 x, and 6.01 x slower than the baseline, respectively. We explore these
high overheads below. Third, the sHILL version of the package management benchmark has no
significant overhead and the SHILL version of the grading script is only 1.13 x slower, despite the

finer-grained guarantees these scripts provide.

PROFILING To better understand the performance of sHILL, we profiled the “sHILL version”
configurations of the Grading and Find benchmarks, and the “Sandboxed” configurations of

Download and Uninstall. We inserted instrumentation to measure the total execution time,

89

Racket startup (which includes script compilation, and starting the runtime), setup of sandboxes,
and sandboxed execution for each benchmark. Figure 33 shows the results. Remaining time (i.e.,
time not spent on Racket startup, sandbox setup, or sandboxed execution) is time spent execut-
ing SHILL scripts, including contract checking. We used a Racket profiler [108] to estimate how
SHILL’s features affect the running time. Most time spent executing SHILL scripts is in capability-
safe scripts (more than 99% for both Find and Grading) and in particular checking contracts
(86% for Find and 87% for Grading). The contract on the result of pkg-native accounts for
almost all contract checking time (92% and 93% of contract checking time for Find and Grading
respectively) because it is checked once per sandbox. (The remaining time for the Download and
Uninstall benchmarks was insufficient for the profiler to produce meaningful data.)

For these benchmarks, most time outside of sandboxed execution is spent enforcing security
guarantees: checking contracts and setting up sandboxes. The Grading benchmark creates 5,371
sandboxes, Find creates 15,292, Uninstall creates one, and Download creates two (one for pkg-
native and one for the executable, curl). Grading and Find create many sandboxes, each of
which takes a relatively small amount of time to set up and a relatively small amount of time to
check the contract from pkg-native. Racket startup cost is responsible for the high overhead
of Download and Uninstall. The high overhead of Find is due to contract checking and sandbox
setup, but also due to high sandboxed execution time. A small portion of the latter cost is due
to overhead on system call interposition for privilege checking (see microbenchmarks below).
We conjecture that the remaining cost stems from the high number of short-lived sandboxes
that Find creates, which causes contention between threads using privilege maps and the kernel’s

asynchronous cleanup of expired sHILL sandbox sessions.

MicrOBENCHMARKS To understand the overhead added to system calls due to privilege check-

ing during sandboxed execution (see Section 4.2.2.2), we evaluated microbenchmarks for sev-

90

Uninstall Download Grading Find
Total time 0.82s 1.66 s 116.38 s 61.20 8
Racket startup 0.65 s 0.63 S 0.92 'S 0.65 S
Sandbox
setup 0.01S 0.01S 6.98 s 18.04 s
execution 0.14 s 0.96's 104.09 S 27.618
Remaining time 0.03 S 0.07 8 4.39 S 14.90 S
Figure 33: Performance breakdown of four benchmarks.

Operation SHILL Installed Sandboxed Difference
pread-1B 516 £+ 8o ns 560 = 64 ns 44 + 102 ns
pread-1MB 199 + 4 ms 202 + 6 ms 3 = 7ms
create-unlink 13 + 3 ms 14 £ 4ms 1+ 4ms
open-read-close

1 lookup 3.7 £ 0.4 ms 4.0 £ 0.4 ms 0.3 £ 0.6 ms
5 lookups 5.3 + 0.3 ms 6.4 + 0.5 ms 1.1 + 0.6 ms

Figure 34: Overhead of sHILL for microbenchmarks.

91

eral representative system calls under both the “sHILL installed” and “Sandboxed” configura-
tions. The pread-1B microbenchmark reads one byte from an opened file; pread-1MB reads 1
megabyte. The create-unlink microbenchmark creates a new file, closes, and unlinks it. The
open-read-close benchmarks open a file, reads one byte, and closes it. In one version of this
benchmark, the path argument to open has length one, and in the other it has length five (i.e.,
the file is nested in 4 subdirectories).

We timed one million iterations of each microbenchmark, except for pread-1MB, which was
executed one thousand times. Figure 34 shows the mean execution time and 95% confidence
intervals. All differences were statistically significant. The overhead of executing system callsin a
sHILL sandbox ranges between 18% (open-read-close, 5lookups) and 1% (pread-1MB). For
the open-read-close benchmarks, further experiments (not shown) indicate that overhead
increases linearly in the length of the path (i.e., linearly with the number of lookup system calls

required).

4.4 RELATED WORK

There is extensive research on capability-based security that has resulted in a plethora of systems,

programming languages, design patterns, and reasoning techniques.

OPERATING SYSTEMS ~ Capability-based operating systems [20] such as PSOS [85], KeyKOS [14,
45], EROS [103], and Coyotos [102] use operating system and hardware capabilities to limit the
authority of users and processes. Numerous microkernels inspired by the L4 family [66] employ
capabilities as an access control mechanism [10, 50, 62]. SHILL is not an operating system and is
built on a commodity operating system. However, it shares similar goals and draws inspiration
from these novel systems. For instance, the source of certain kinds of capabilities in KeyKOS is

the command system: the only program in the system with ambient access to a user’s directory.

92

SHILL’s ambient scripts serve the same purpose.

Capsicum [126] extends the FreeBSD operating system with capabilities but requires pro-
grams to be rewritten to use the capability-based interfaces in order to make use of capability
mode. By contrast, SHILL’s capability-based sandbox does not require executables to be aware of
capabilities. In addition, SHILL capabilities are more expressive than Capsicum capabilities; for
example, a SHILL capability can express the permission to create files in a directory and delete

only files that were created with the capability.

PROGRAMMING LANGUAGES The use of language-level capabilities has along history [82]. The E
programming language [80] is a seminal object capability language, where capabilities are object
references. CapDesk [111, 122] is a desktop shell for launching applications written in E. Ap-
plications are granted limited authority initially and can gain more capabilities through power-
boxes, which mediate requests for authority from the application to the user. In contrast to SHILL,
CapDesk does not have a scripting interface and applications launched by CapDesk must be
capability-aware and designed to work with the CapDesk framework.

Joe-E [73] restricts Java to an object-capability-safe subset. Similarly, Caja [78] introduces an
object-capability-safe subset of JavaScript. Maffeis et al. [70] prove that these subsets are indeed
capability safe. Unlike other capability-safe languages, SHILL targets a particular domain (shell
scripting) instead of general programming and uses contracts to manage capabilities instead of

capability-based design patterns [80].

OTHER APPROACHES TO SYSTEMS SECURITY Laminar [97] integrates operating system and pro-
gramming language abstractions to enforce decentralized information flow control (DIFC). Its
high-level architecture resembles that of sHILL. However, Laminar provides fine-grained secu-
rity only for programs that use Laminar’s security abstractions, and does not provide declarative

security specifications. Hails [40] uses declarative information-flow control policies as a mech-

93

anism for composing mutually distrusting web applications. Unlike sHILL, it provides limited
support for securing legacy applications. HiStar [128], Asbestos [30], and Flume [61] track in-
formation flow to enforce fine-grained security policies. While all of these methods can enforce
security restrictions on untrusted applications, SHILL uses capabilities and contracts rather than
DIFC labels.

A wide variety of sandboxing tools have been developed for commodity operating systems, in-
cluding SELinux [67], Seatbelt [125], AppArmor [4], Grsecurity [107], LXC [69], and Docker [27].
Unlike sHILL, these sandboxes deny or grant access based on a profile rather than a programmable
capability-based interface. Mbox [58] and TxBOX [52] create sandboxes with transactional se-
mantics that can reverse the effects of misbehaving processes, but enforce strong isolation be-
tween sandboxed processes and the rest of the system. Notably, programs running in a SHILL
sandbox are not isolated from the rest of the system. For example, in our Apache case study,
concurrently executing programs can dynamically add new web content or view logs as they
are generated. Many of these sandboxes require root privileges, but some are available to all
users [58]. PLASH [101] is a capability-based interactive shell for creating sandboxes in which
to execute shell commands, similar to sHILL’s exec. All of these tools lack the reasoning princi-

ples sHILL provides for composing multiple sandboxes together.

94

Authorization Contracts

In the previous chapter, we have seen how one approach to access control, capabilities, can be im-
proved by using behavioral contracts to express and enforce security properties. This approach
is limiting because it forces programmers to write programs that are explicitly structured to meet
the requirements of capability-based security. This is not just a problem of capability-based se-
curity. In general, access control mechanisms for general purpose programming languages have
made design choices that are not suitable for all application domains and are typically mutually
incompatible. For example, Java stack inspection [123] determines the rights associated with
a call site by walking the stack from the current stack frame. In contrast, object-capability lan-
guages (e.g., E [80] and Caja [78]) determine rights by the lexical structure of the program: a code

may call operations on exactly those resources that are reachable from variables in the code’s text.

95

In this chapter we propose a new, extensible access control framework based on software con-
tracts that allows component authors to design access control monitors that suit their needs.
The framework supports the design and implementation of many different custom and exist-
ing access control monitors for software components. Moreover, because different monitors are
implemented using a common framework, different software components within the same ap-
plication can use different access control mechanisms.

In designing such a framework, we first must consider the tasks that an access control monitor
must perform, and how those tasks reveal choices in the design of such monitors. An access
control monitor mediates requests to call sensitive operations and allows each call if and only if
the request possesses the necessary rights to call the operation. Broadly speaking, when an access
control mechanism is presented with a call to a sensitive operation, it must be able to answer two
questions. First, which rights are required for the call? And second, which rights does the request
possess? The design of an access control mechanism specifies, implicitly or explicitly, the answers
to these questions.

For example, Unix file permissions describe which users are allowed to call which operations
on a file. The access control mechanism uses file permissions to determine what rights are nec-
essary to call different sensitive operations. Each Unix process executes on behalf of a specific
user, and a request to call an operation possesses the same rights as the user of the process that
issues the request. Thus, file permissions answer the first question, and the rights of the user
associated with a process answer the second question. Importantly, Unix associates users and
processes in two different ways. By default, a new process runs on behalf of the same user as the
process that spawned it. But a process can run on behalf of a different user if it runs an executable
that was setuid. When a process invokes a setuid executable, the operating system launches
a new process to run the executable and associates the new process with the user that owns the

executable, rather than the user that invoked it. Hence, this feature creates services that provide

96

restricted access to resources that a user could not otherwise access.

Similar to operating systems, software components also need access control mechanisms to
prevent certain unauthorized clients from calling sensitive operations while allowing authorized
ones to do so. Thus, when responding to a request to call a sensitive operation, access control
mechanisms for components must be able to answer the same two questions as access control
mechanisms for operating systems: which rights are necessary for the call and which rights the
request possesses.

The framework builds on a novel concept: the authority environment. Just as each execution
context has a variable environment that maps variable identifiers to values, each execution con-
text has an authority environment that associates the context with its rights to call operations.
The rights that a call to a sensitive operation possesses are those granted by the authority envi-
ronment of the call’s execution context.

By analogy with dynamic and lexical scoping of variable environments, we identify two ways

in which an execution context can receive authority:

1. dynamically, by inheriting the authority environment of the surrounding execution con-

text, and

2. lexically, by capturing the authority environment of the execution context where it is de-

fined

Returning to the Unix file system example, a process receives authority dynamically when it in-
herits the user of the process that launched it. A process receives authority “lexically” when it
runs a setuid executable.

Based on the correspondence with variable scoping, we define a framework for designing ac-
cess control monitors as sets of monitor actions that manipulate authority environments (Sec-

tion 5.2). We implement our framework as a library for Racket [38] without changes to the

97

language’s runtime. We use higher-order contracts [37] to specify where an access control mon-
itor should interpose on a program and how it should manage authority environments. In the
same way that existing behavioral contracts support separation of concerns by removing defen-
sive checks from programs, our authorization contracts separate the task of access control from
the program’s functionality.

The design of this framework presents four major contributions:

1. the introduction of authority environments as a unifying concept for access control mech-

anisms (Section 5.1),

2. the introduction of context contracts to check and enforce properties of execution contexts

(Section 5.2.1),

3. anovel authorization logic for representing and querying authority in authority environ-

ments (Section 5.2.2), and

4. authorization contracts that specialize context contracts for managing authority environ-

ments and enforcing access control policies expressed in the logic (Section 5.2.3).

We have used the framework to implement diverse access control mechanisms: discretionary ac-
cess control, stack inspection, history-based access control, and object-capabilities (Section 5.3).
We demonstrate the practicality of our approach with three realistic case studies (Section 5.4).

Finally, we discuss related work (Section 5.5).

5.1 AUTHORITY ENVIRONMENTS

In this section, we introduce authority environments as a unifying concept for access control.
First, we review the differences between lexical and dynamic scoping (Section 5.1.1). Then we de-

scribe the connection between lexical and dynamic scoping and access control (Section 5.1.2) and

98

show how we can use scoping in the design of a framework for writing access control monitors

(Section 5.1.3). Throughout, we use small examples in the Racket programming language [38].

5.1.1 LEXICAL AND DYNAMIC SCOPING

The scope of a variable binding is the spatial and temporal part of the program in which it is
visible. A common way to categorize strategies for assigning scopes to bindings is as either lexical
or dynamic. Earlier work distinguishes between the scope of a binding, which describes where
the binding is visible in the program text, and the extent of a binding, which describes when the
binding is visible during execution. Dynamic scope often refers to bindings that have dynamic
extent and “indefinite” scope. Here, we use dynamic scope to refer to bindings that have dynamic
extent and lexical scope, also called “fluid” scope [39, 109, 110].

Under lexical scoping, a variable refers to the binding from its closest binder in the textual
structure of the program. For example, in the Racket expression below, the variable x in function
f refers to the binding in the outer-most let statement. The evaluation of this expression returns

0 since the inner-most let statement has no effect on the value x binds within f.

> (let ([x 0])
(let ([f (lambda () x)1)
(let ([x 42])
())))

In a programming language with fluid scoping, programmers can instead associate a binding
with the dynamic extent of an expression. That binding is visible to any code that runs in the
dynamic extent of the expression. For example, the following Racket expression defines a new
fluidly-scoped variable x with default value 6. The parameterize expression binds x to the
value 42 in the dynamic extent of its body. The variable x in the body of f refers to the most

recent binding rather than the closest one in the program text. Since f is invoked within the

99

parameterize expression, the program evaluates to 42 instead of 0.

> (let ([x (make-parameter 0)])
(let ([f (lambda () (x))1)
(parameterize ([x 42])

())))
42
Fluid scoping is a useful programming construct because it allows the context of an expression
to communicate with its callees without explicitly threading arguments through the program.
For example, a library function for printing may offer a parameter that determines the standard
output file. Instead of threading that file as an argument through every function call leading to
the printf routine, a client program can instead set the parameter once and all calls to printf

in the body of the program use the file.

5.1.2 SCOPING FOR ACCESS CONTROL

This ability to pass contextual information from an execution context to an eventual callee closely
matches the problem of correctly determining the authority of a request to call a sensitive oper-
ation. To demonstrate this relationship, consider the design of a web application with multiple
users. A key component of this application is a login function that authenticates users and exe-
cutes code on their behalf:

(define (login user guess onSuccess)
(if (check-password? user guess)
(run-as-user user onSuccess)
(error "Wrong password!")))
This function takes three arguments: the user attempting to authenticate, the password guess,
and a callback onSuccess to invoke with the user’s rights if the password is correct. After check-

ing the password, the login function changes the state of the program to indicate that the current

user is now user and then calls onSuccess.

100

The body of onSuccess may attempt to access sensitive resources. For example, it may try to
update a user’s profile. To avoid an unauthorized update, the update-profile function checks
whether the current user has sufficient rights:

(define (update-profile profileUser text)
(if (can-update? currentUser profileUser)

(error "Unauthorized!")))

Function can-update? compares the current user with the user who owns the profile to deter-
mine whether the update is authorized. This code thus implicitly uses the authority of its context,
i.e., the current user, in much the same way that code accesses the dynamically scoped bindings
from its context. By managing authority as an implicit context in this way, we can avoid modi-
tying the code between the decision to run a computation with particular authority and the call
to the sensitive operation. This has two advantages. First, threading authority explicitly through
the program reduces extensibility, since third party code would need to be aware of and correctly
handle authority explicitly. Second, if the code is untrustworthy, it might attempt to subvert the
access control checks that protect the sensitive operation by fabricating its own authority.

Another requirement of the security of this application is that only code running with the
authority of the main loop is allowed to switch users. According to the Principle of Least Priv-
ilege [98], we should further limit the code that is allowed to switch users to just the login
function, and switch to an unprivileged user for the rest the program. Crucially, calling the lo-
gin function must still use the authority that was in its environment when it was created, i.e.,
the authority of the main loop. In a sense, for Login, we wish to close over the authority of the
main loop, in the same way that closures capture lexically scoped bindings.

To achieve this, we build on the analogy between scoping and access control and introduce
the concept of an authority environment. An authority environment associates rights with an

execution context, just as a variable environment associates bindings with an execution context.

101

(define-monitor users
(monitor-interface setuid/c chuser/c checkuser/c)
(action
[chuser/c (user)
#:on-create (do-create)
#:on-apply (do-apply
#:check (=@ current-principal user user)
#:set-principal user)]
[checkuser/c (user)
#:on-create (do-create)
#:on-apply (do-apply
#:check (=@ current-principal user user))]
[setuid/c
#:0on-create (do-create)
#:on-apply (do-apply
#:set-principal closure-principal)]))

Figure 35: Defining a simple access control monitor.

Just like variable environments, authority environments can be captured and associated with

code, updated, and extended with new bindings for the dynamic extent of a computation. In this

application, the authority environment of an execution context records the user on whose behalf

the code executes. Section 5.1.3 shows how authority environments help enforce access control in

our running example, including how to create a secure login function. Section 5.2 generalizes

authority environments so that we can express a wide variety of access control mechanisms.

5.1.3 FROM ACCESS CONTROL TO AUTHORIZATION CONTRACTS

Using the concept of an authority environment, we build an access control monitor that ma-

nipulates and inspects the authority environments of the example web application. The monitor

consists of actions that describe how events in the execution of the application interact with its au-

102

thority environment. We describe our framework for defining monitors in detail in Section 5.3.
Here we explain only the features relevant to the example.

Figure 35 shows our example monitor. This monitor specifies three actions: setuid/c,
chuser/c,and checkuser/c. Eachaction defines a higher-order function contract [37]. When
one of these contracts is attached to a function, the contract captures the current authority en-
vironment and associates it with the function. When the function is called, the contract has
access to both the authority environment at the call site and the authority environment that it
has captured. The monitor configures each action-contract with two hooks: #:on-create and
#:on-apply. By changing these hooks, monitor designers can implement actions that imple-
ment different forms of “lexically” and dynamically scoped authority environments.

Action chuser/c is parameterized with an argument user that identifies the user whose
authority should be used during the execution of the body of a contracted function. The #:on-
apply hook for chuser/c ignores the authority it has closed over and sets the active principal
to user for the dynamic extent of the body of the contracted function, but only if the #: check
holds, that is, the current-principal has authority over user user. Otherwise, it raises a
security violation as a contract violation. Monitor action checkuser/c is also parameterized
with a user. Upon a call of its contracted function, it checks that the current-principal
has authority over user. If the check succeeds, the action does not change the authority en-
vironment. If the check fails, the action raises a security violation. The final monitor action,
setuid/c, creates an authority closure: calling a function with this contract changes the cur-
rent principal in the authority environment to the closed-over principal closure-principal
for the dynamic extent of the function’s body.

Using the monitor, we can now reimplement the web application. First, we can replace code
that defensively performs authorization checks with contracts that enforce authority require-

ments:

103

(define/contract
(update-profile someUser text)
(->a ([user principal?] [text string?])
#:auth (user) (checkuser/c user)
any)

This revised implementation of update-prof1ile uses the Racket form define/contractto
attach a contract to the update-profile function. This contract is a dependent contract [37]
for a function. It says that update-profile takes two arguments: user, which must be a
principal?, and text, which must be a string?. The keyword argument # : auth says that
the authorization contract for this function depends on the user argument and attaches the con-
tract (checkuser/c user) to the function. Finally, the range of this contract is any, making
no requirements on the return values. The definition of the function can now elide the autho-
rization check.
We also revise the implementation of login:

(define/contract
(login user guess onSuccess)
(->a ([user principal?] [guess string?]
[onSuccess (user) (chuser/c user)])
#:auth () setuid/c any)
(if (check-password? user guess)
(onSuccess)
(error "Wrong password")))
The keyword argument # : auth () setuid/cattachesthe setuid/caction to thelogin func-
tion, capturing the authority of the program context where it is created. This allows the appli-
cation to switch to a less privileged principal without losing the ability to safely authenticate
as a different user. In the original implementation, login uses a hand-rolled function run-

as-user to confine onSuccess within the authority of user. In the revised code, login

can invoke onSuccess directly. The contract on the onSuccess argument attaches the action

104

(chuser/c user) to the function. This ensures that any call to onSuccess has the correct

authority.

5.2 A FRAMEWORK FOR ACCESS CONTROL

In this section, we present the general design of our framework with a formal model. First, we
show how we extend existing higher-order function contracts to context contracts that check and
modify information about their execution context (Section 5.2.1). Context contracts are expres-
sive enough to enforce a wide range of properties. However, this flexibility makes it difficult to
use them to implement and reason about access control. To free users from this burden, our
framework provides a specialized interface for defining authorization contracts. The interface
simplifies the definition of context contracts for access control in two ways. First, it specifies
a common representation for authorization environments (Section 5.2.2). At the core of this
representation is a novel authorization logic that describes how authority captured in a closure
may be used. Second, it defines combinators for building authorization contracts (Section 5.2.3).
Authorization contracts are specializations of context contracts that use the authorization logic

to succinctly describe how they manage authority environments.

5.2.1 A CONTRACT SYSTEM WITH CONTEXT CONTRACTS

We model higher-order contracts and context contracts as extensions to an applied lambda cal-
culus with parameters to support dynamic binding. This model extends the model presented in
Chapter 2. Extensions to its syntax are given in Figure 36. Figure 38 gives the additional rules of
reduction semantics for the extended model. Metafunction do-parameterization, which is used
in the semantics of context contracts, is shown in Figure 39.

Evaluation contexts are standard and enforce call-by-value, left-to-right evaluation. The ad-

ditional rules of the typing judgment for the language are given in Figure 40. The extension

105

vu=...|(paramr) | (t:7)| (param/pjkictcv) | (tag/pjklctcv) | (ctx/p:tjlvg...v)
gu=(=>ve)

ctc = ... | (param/c ctc) | (tag/c ctc) | (»a:tctcvete) | (CxlciTvg...vg...)
e ==| (make-parameter ¢) | (parameterize (ee)e) | (? e) | (e < e)

| (make-tag : 7) | (reset e e) | (shift e x ¢)
| (param/ce) | (tag/ce) | (ma:Teee)| (ctx/c:Tege ... ege...)

geu=(e=>e«e)

.... | (rparam) | (r tag)

.... | (make-parameter E) | (parameterize (E e))

| (parameterize ((param r) E) e) | (parameterize ((param r) v) E)

| (param/cE) | (tag/c E) | (~a:TtEee)| (»a:tctcEe) | (»a :TctcvE)

| (E<e)| ((paramr) < E)|(? E)| (resetEe) | (reset vE) | (shift E x e)
|(ctxlc:TEge...ege..)|(ctxlcitvg..(E>e«e)ge..ege...)
|(ctxlc:tvg...(v>E«e)ge...ege..)| (ctx/c:Ttvg..(v>v<E)ge..ege..)
|(ctxlc:tvg...Ege..)|(ctxlc:Ttvg..vg..(E>e«<e)ge..)

|(ctx/ic:tvg...vg...(v>E«<e)ge..)|(ctxlc:Tvg..vg..(v=>v<E)ge..)
| (checkjkEe)
T:=[]| tag/pjklctc T)

T
E:

Figure 36: Syntax extensions for context contracts.

supports first class delimited continuations [19] because our implementation language supports
them and they interact in interesting ways with our framework.
The semantics of common language features was presented in Chapter 2. Below, we explain

the semantics of parameters, continuations, higher-order contracts, and context contracts.

PARAMETERS

Parameters are first-class values that can be used to access and install dynamic bindings. Pa-
rameters implement fluid scope because access to their dynamic bindings is controlled lexically
by access to the parameter itself. The expression (make-parameter ¢) creates a new parameter
(param r) with default value the result of e, where ris a fresh tag uniquely identifying the param-
eter. The default value is recorded in the store ¢. Term (parameterize ((param r) ¢;) e,) installs

the result of e; as the new value of the parameter (param r) for the dynamic extent of e,. Access-

106

(E[(make-parameter v)], o) —> [make-param]

(E[(param 1)}, o[r~ v])
where r fresh

(E[((param r) « v)], o) —> [set-param-default]
CE[], o[r~ v])
where #t = param-free[E, (param r)]

(E/[(parameterize ((param r) v;) E;[((param r) < v,)])], o) —> [set-param]
(E;[(parameterize ((param r) v,) Ez[v2])], o)

where #t = param-free[E, (param r)]
(E[(? (param 1))], o) —> [read-param-default]
<E[v], o)

where #t = param-free[E, (param r)1, o(r) = v

(E;[(parameterize ((param r) v) E;[(? (param r)])], o) —> [read-param]
(E/[(parameterize ((param r) v) E;[v])], o»

where #t = param-free[E,, (param r)]

(E[(parameterize ((param r) v,) v)], 0> —> [parameterize]
CE[v], o)
(E[(make-tag : 7)], o) —> [make-tag]

CE[(t:1)], o)
where t fresh

(E[(reset T[(t : 1)] V)], 00 —> [reset]
CE[v], o)
(E/[(reset Ti[(t : (za > 7))] — [shift]

E[(shift To[(t : (za > ©)] x e)])], &
(Ei[(reset T)[(t : (rs > 7.))] e[x = wrap-pos[Ti[(: (zs > 7,))], wrap-neg[T:[(: (7o >)], wIID], o
where #t = tag-free[Es, 1, i = (\ (x;: 7.) (reset T[(¢ : (rs ~ 7,))] Eo[x]), x/fresh

Figure 38: Reduction semantics for extensions.

107

CE[(monj k I (»a : 7 ctcy ve ctc,) v)], 0) —> [>a]
CE[(A (x :7) (monj k I ctc,

((monj kI (v. (monjljctc, x)) v)

(monjlk ctey x))))], o

(E[(mon j k1 (ctX/C : (1: > T) Ve ge vve Va G -2) V)], 00 —> [ctx/c]
(E[(checkj 1 (v. () e,)], o

where e, = do-parameterization[s, (CtX/p : (4 = 7.) j 1 Va g - V), &y -]
El((etxlp: (ta= 1) jlvaga .. W) V)], ©) —> [ctx/p]
(E[(checkjI (v. () (e, V)], 0>

where ¢, = do-parameterization[7y, vj, g, -..]

(E[(monj k I (tag/c ctc) v)], o) —> [tag/c]
(E[(tag/p j k I ctc v)], o)

(E[(mon j k I (param/c ctc) v)], o) —> [param/c]
(E[(param/p j k I ctc v)], o

(E[(? (param/pj k [ctc v))], o) —> [read-param/p]

CE[(monj k I ctc (? v))], o)
(E[(parameterize ((param/p j k I ctc v,) v) e)], 0) —> [parameterize-param/p]
(E[(parameterize (v, (monj [k ctc v)) e)], o

(E[((param/pj k I ctc v,) < v)], 0) —> [set-param/p]
CE[(v, < (monj Lk ctc v))], o

(E[(checkj k #t e)], o) —> [check-true]
(Ele], o)

(E[(checkj k #f e)], o) —> [check-false]

{(errorj k), o>

Figure 38: Reduction semantics for extensions (Continued).

do-parameterization[t, v] =
y

do-parameterization[[7, e, (v, = v, < W), g, ...]1 =
(let (x do-parameterization[7, e, g, ...])
(if (v,)
(let (x, (v,)))
(A (x. : 7) (parameterize (v, x,) (x x.))))
x))

Figure 39: Metafunction implementing guarded parameterizations.

108

IZre:t =1

I'; 2 + (make-parameter e) : (rparam) TI; X+ (paramr) : (r param)

I'; 2+ e (1, param)

IXZre:m, I; 2+ e; @ (T param)
I'i'Zres: T I'; 2+ e: (rparam) I'Xvre:t
I; 2+ (parameterize (e; e2) e3) : T Ix-Re:t IX+(ej«<e):T

I Zre (1~) tag)

IXre::n

I 2+ (make-tag:7): (rtag) TI; X+ (t:7): (rtag) I'' X+ (resetee) : 1o

I'Xre;: ((T/ d Tz) tag)
INx~ (- n)); 2ZrFe: (1) I'; 2+ e : (T contract)

I; X+ (shifte; x e) 1 1 I'; 2+ (param/c e) : ((r param) contract)

I'; X+ ey (1, contract)
I 2 ke, (1~ ((rs ~ 7,) contract))
I'; X+ e : (T contract) I'; X+ e, : (7, contract)

I; X+ (taglce) : ((rtag) contract) T; 2+ (—a:tieseqe): ((t2— 1) contract)

I; 2+ e.: (Unit - Bool)

I X+ ge.
I; 2+ e, : (Unit - Bool) I; 2 + ctc : (T contract)
I; 2+ gea I, 2+ v: (rparam)

I Zr(ctx/c iTec ge. ... e. ge, ...) s (Tcontract) T X+ (param/p jk I ctc v) : (r param)

I2-vit
T; X+ ctc : (r contract) I'; 2 +v: (Unit - Bool)
I 2+v:(rtag) IryZ-g

I X+ Q@aglpjklictev):(rtag) LEZ-(Ctxpitjlvg..v):t

Figure 40: Well-typed terms for extensions.

109

ing the value of a parameter with term (? (param r)) returns the value of the closest enclosing
parameterize for (param r) in the current evaluation context. If there is no such term, it returns
the current value for (param r) in the store. Similarly, term ((param r) := v) mutates the current
binding for the parameter, updating the parameter associated with either the closest enclosing
parameterize for (param r) in the current evaluation context or the value for r in the store, if there

is no such expression.

FIRST-CLASS CONTINUATIONS

Our model includes first-class delimited continuations using Danvy and Filinski’s shift and reset
operators [19]. Term (reset (¢ : 7) e) adds a marker with tag ¢ to the current continuation and then
executes e. Term (shift ¢ x e) reifies its continuation up to the nearest reset with a matching tag
t as a value v, removes the captured continuation, and invokes expression e with the captured

continuation bound to x. To demonstrate these semantics, consider the following term:

(let (t (make-tag : (Int - Int)))
(1 + (reset t (10 + (shift ¢ f (f (f 100)))))))

This term evalutes to 121. The key step in evaluating this term occurs when the reducible ex-
pression is the shift operator: E[(shift (¢ : (Int > Int)) f (f (f 100)))]. The continuation E can be de-
composed into two parts, seperated by the delimiter reset: E;[(reset (¢ : (Int > Int)) E;)], where E,
is (1 +[]) and E; is (10 +[]). The shift operator binds f to a function that reifies the continuation
up to the delimiter (reset (¢ : (Int— Int)) E;): (A (x : Int) (reset (¢ : (Int > Int)) (10 + x))). It then re-
moves this part of the continuation, leaving just the evaluation context E;. The resulting term
(1 + ((\ (x : Int) (reset (¢ : (Int = Int)) (10 + x))) (A (x : Int) (reset (¢ : (Int - Int)) (10 + x))) 100))) eval-
uates to 121.

Of course, this example is somewhat contrived. In practice, first-class continuations are used

to implement a wide-range of control abstractions including exceptions, back-tracking search,

110

and event-based programming. While our model includes just shift and reset operators, a num-
ber of alternative formulations of first-class continuations have been proposed. Takikawa et

al. [117] show how the style of contracts used in our model can be applied to these alternatives.

HIGHER-ORDER CONTRACTS

Contract (~a : 7 ctey v. ctc,) is a generalization of indy-dependent” contracts for higher-order func-
tions [25]. This contract corresponds to the —>a contracts from Section 5.1. Attaching the con-
tract to a function returns a new value that enforces contracts on the argument and the result of
the function. The contract is dependent since the contract uses the argument of a contracted fun-
tion to construct an additional contract for the function. This generalizes previous dependent
function contracts, which construct a contract for the function’s result, but not for the function
itself. This extension makes it easier to reuse context and authorization contracts by defining
contract combinators that are specialized to particular arguments when the contracted function
is applied. Without dependent function contracts, a function whose contract should depend on
its arguments would need to be duplicated for each possible contract, and different uses of the
function would need to invoke the appropriately contracted copy.

Applying a function v with this contract has four steps. First, the argument is wrapped with
the contract for the domain, c,. Second, the wrapped argument is passed to the function v. to
construct a new contract. Third, the resulting contract is attached to v, which is applied to the
wrapped argument. Finally, the contract for the range, c,, is attached to the result of the applica-
tion.

The parameter contract (param/c ctc) is a higher-order contract that restricts uses of a param-

eter. A contracted parameter v reduces to a proxy (param/p j k I ctc v) which records the necessary

"An indy-dependent contract is a dependent function contract that uses the “indy” strategy for blame
assignment [25].

111

blame information and intercepts uses of the parameter to enforce that values bound to the pa-
rameter meet contract ctc.

Our contracts for continuations follow Takikawa et al. [117]. Contracts for continuations are
attached to the tags that connect shift operators to their corresponding reset delimiters. A tag
contract (tag/c ctc) is a higher-order contract that restricts how delimited continuations created
by shift expressions are used. Attaching a contract to a tag creates a proxy value (tag/p j k I ctc v)
which records blame information and a contract. When a shift operator is invoked, the tags at
both the shift and reset operators for the tag may be wrapped in one or more proxies attaching
contracts. Meta-functions wrap-pos and wrap-neg collect the contracts from these proxies and
apply them to the freshly reified continuation. Contracts origininating from the reset tag are
given positive blame. That is, the responsibility for satisfying contracts on arguments is from
these contract is assigned to the expression supplied by the shift. Contracts originating from
the shift tag have their blame swapped, to reflect that the shift expression is obligated to use the

continuation as specified by the tag’s contract.

CONTEXT CONTRACTS

This work introduces context contracts, which are novel higher-order contracts that enforce re-
strictions on the execution context of function calls. To track properties of execution contexts,
context contracts use parameters to install and access relevant state. A context contract inter-
poses on programs at two key times: when the contract is attached to a function and when the
contracted function is applied. At both times, the contract can inspect the current values of pa-
rameters to check that the current environment is satisfactory, capture the current value for later
use, or change the parameterization of a call to the contracted function.

A context contract (CtX/C : Tve (Ve g = Ve p < Vel) we Va (Vag = Vap < Vo) ..) has four parts:

1. w, apredicate that checks whether the context is appropriate when the contract is attached,

112

2. (Vg™ Vep < Vo) ..., a list of guarded parameterizations to close over when the contract is

attached,

3. v, a predicate that checks whether the context is appropriate when the contract function

is called, and

4. (Vag = Vap < Vao) ..., a list of guarded parameterizations to be installed around the body of

the contracted function if the contract check succeeds.

The first two parts are evaluated when the contract is attached to a value. First, the predicate . is
executed to allow the contract to check the current context. If the predicate returns #f, a contract
error is raised blaming the client of the contract. Otherwise, each guarded parameterization from
part 2 is evaluated in turn. If applying the guard v. , returns #t, the corresponding thunk v. , is
executed to produce a new value. This value is “closed over” and re-installed for parameter v. ,
when the contracted function is applied. The predicate v, and the remaining parameterizations
are recorded in a proxy (Ctx/p : 7 1 ve (Vg = Vap < Vas) -. V).

The proxy enforces additional checks and parameterizations when the contracted function
is called. First, the parameter values captured when the contract was attached are reinstalled.
This gives the evaluation of the proxy and the function call access to some bindings from when
the contract was attached, in addition to any bindings that are present in the current evaluation
context. With these captured bindings in place, the proxy first evaluates the predicate v,, which
checks whether the current context is satisfactory. If the predicate returns false, a contract error is
raised blaming the client I. Otherwise, the guarded parameterizations of the proxy are evaluated
in a similar fashion as before. However, any new bindings are installed just for the dynamic extent
of the contracted function’s call.

Figure 41 demonstrates context contracts with a simple example. The example involves two

context contracts, outer/c and inner/c, that communicate via parameter p. The contracts en-

113

(let (p (make-parameter #f))
(let (true (A (x : Unit) #1))
(let (outer/c (ctx/c : (Int - Int) true true (true = p < true)))
(let (inner/c (ctx/c : (Int - Int) true (A (x : Unit) (? p))))
(let (inner (mon inner-ctc in top inner/c (A (x : Int) x)))
(let (outer (mon outer-ctc out top outer/c (A (x : Int) (inner x))))
(inner 42)))))))

Figure 41: Context contracts enforcing nested applications.

(let (cp (make-parameter #f))
(let (capture/c (ctx/c : Inttrue (true = cp « (A (x : Unit) (? p))) true (true = p « (A (x : Unit) (? cp)))))
)

Figure 42: A context contract that closes over parameter p.

sure that function inner can only be applied in the dynamic extent of function outer. Evaluating
(inner 42) results in a contract error (error inner-ctc top) blaming the context that applied inner.
Replacing this expression with (outer 42) evaluates to 42.

Context contracts can also close over the values of parameters. Consider extending the ex-
ample in Figure 41 with the contract capture/c from Figure 42. This contract captures the value
of parameter p when the contract is applied, and reinstates that value for the dynamic extent of
subsequent applications of the contracted value. The ability to close over an environment in this

way is a key feature required to implement authorization contracts.

COMPLETE MONITORING

Our contract system satisfies complete monitoring [25], an important correctness criterion for
contract systems. Complete monitoring guarantees that a contract system correctly assigns blame

to components that violate their contracts and, crucially, that the contract system interposes on

114

all uses of a value in a component that did not create that value. This property makes contracts
suitable for interposing on programs to enforce access control policies. Moreover, because the in-
terposition is local to individual components, an access control monitor can be installed around
a component without a global enforcement mechanism or the cooperation of other components.

Put differently, complete monitoring guarantees that contracts can enforce the same set of
properties as reference monitors: an arbitrary prefix-closed property of a sequence of events.
For contracts, these events are the attachment of contracts to values and the use of contracted
values. In contrast, for reference monitors built with aspects, this set of events is determined
by the point-cuts selected by the policy. In either case, the programmer must correctly identify

relevant events and specify the policy, but can assume the policy is enforced.

5.2.2 REPRESENTING AUTHORITY

In principle, a programmer can use context contracts to enforce arbitrary properties of execution
contexts such as access control, but in practice this requires the careful design of an appropriate
representation of the relevant information as an environment, i.e., a set of parameters. In par-
ticular, for access control this requires a representation of the authority of an execution context.

The authority of an execution context describes the rights it has to perform sensitive opera-
tions. In different access control mechanisms, the form and organization of these rights varies.
For example, in a web application, a session executes on behalf of a particular user whose rights
may change over time in accordance with the access control policies attached to the application’s
resources. In the Java stack inspection framework, rights are sets of “permissions” possessed by
activation records that can be queried with the checkPermission operation.

A common way to describe the structure of authority in an access control system involves a
mapping from subjects (users, processes, or security domains) to access rights for objects (re-

sources that require the protection of the access control system) [64]. In practice, subjects and

115

a,bc,du=primP)|T|L|(@>a)|(@avb)|(@aAb)| (W-a)| (W<« a)

del:=(v>v@v)
Wu={del ...}

Figure 43: Syntax of principals, delegations, and worlds.

objects may comprise the same entities, so we refer to both as security principals (or, simply,
principals).

To build a framework that supports many different access control mechanisms, we need a gen-
eral way to express and reason about principals, the authority of principals, and how principals
delegate and restrict their authority. For this purpose, we use an authorization logic [16] based
on the Flow-Limited Authorization Model (FLAM) [6]. We briefly describe our logic, highlight-
ing where it differs from FLAM. In Section 5.2.3, we use this logic to manage authority using
specialized context contracts, dubbed authorization contracts.

Figure 43 presents the syntax of our logic. We assume an enumerable set of primitive principals,
ranged over by the metavariable P. Primitive principals represent program entities that possess
rights, such as users, modules, or activation records. We assume a most trusted principal T and
a least trusted principal 1. For principals a and b, the conjunctive principal (a A b) is a principal
with the authority of both a and b. Similarly, the disjunctive principal (a v b) has the authority of
either a or b.

If principal a trusts principal b, we write (b > a), and say that b acts for a. The acts-for relation is
reflexive and transitive, and induces a lattice structure over the set of principals, with conjunction
as join, disjunction as meet, and T and L as the top and bottom elements of the lattice.

Principals may assert the existence of trust relationships. A delegation (a > b @ ¢) means that
principal ¢ asserts that a acts for b (or, equivalently, that b delegates its authority to a). Of course,

whether a principal d believes the assertion depends on whether d trusts principal c. (We differ

116

[bot] ———[top] [proj]

W;dra¥l W;d+T¥>a W;dv+a¥(a> D)
Wi;dra¥»c W;drb¥>c
[conj-left-1] [conj-left-2]
W;dr(aAb)>c W;dr(@Ab)>c
W;draxb W;dra¥c W;dra¥xc W;drbxc
[conj-right] [disj-left]
Wi;drax((bAc) W;dr(aVvb)>c
Widraxb Widrax>c
[disj-right-1] [disj-right-2]
Wi;drax(bVc) Wi:drax((bVc)
@2»b@c)eW W;drcxd Woscraxb W;;d-(Weec)2d
[del] [closure-left]
W;dvra¥%b W,;dv+ax (W, <« b)
Wy;cra¥%b W;;d-(Wy«c¢)=d a=b
[closure-right] —————[refl]
W,;d-(Wo—>a)zb W;dra%b

W;dvra¥>c W;d+-c%b

[trans]
W;dra%b

Figure 44: Inference rules for judgment W; c+a > b.

117

from FLAM in that we describe only the integrity of delegations, not their confidentiality.)

Judgment W ; c - a > b denotes that given the set of delegations W, principal ¢ believes that
principal a acts for principal b. Intuitively, c believes that a acts for b if that trust relationship can
be derived using only delegations asserted by principals that ¢ trusts.

Figure 44 presents the inference rules for the judgment W ; ¢ - a > b. Rules bot, top, refl, trans,
conj-left, conj-right, disj-left, and disj-right are standard and provide the underlying lattice structure
for the acts-for relation. Rule del captures the intuition that principal ¢ trusts only delegations
asserted by principals that it trusts, that is delegations (a > b @ d) where W;c+d > c.

We have three additional principal constructors. Principal (a > «) is the projection of the au-
thority of principal a on dimension al. Projection is commutative, so ((a >) > f) = ((a >) > a).
We use projections to limit or attenuate the authority of a principal, and to identify access rights.
For example, (a * files) may refer to principal a’s authority restricted to a’s rights to access the file
system. Similarly, principal ((a > obj) > invoke) (equivalently ((a > invoke) > obj)) might refer to
the right to invoke a particular object belonging to principal a. Principal a can grant this right to
another principal b by asserting a delegation: (b > ((a > obj) > invoke) @ a).

We leave projection dimensions underspecified, and access control mechanisms can define
their own dimensions. For any projection dimension «, principal a acts for principal (a * a),
as captured in Rule proj. Typically the converse does not hold, and so (a > a) has strictly less
authority than a.

Novel to this work, we introduce closure principals (W « a) and (W - a). Given a set of dele-
gations W and principal g, the left-closure principal (W < a) represents a with all of the trust rela-
tionships derivable from W where a delegates its authority to other principals. The right-closure

principal (W — a) represents a with all of the trust relationships derivable from W where a acts

TFLAM considers basis projections and ownership projections. The projections we use here are more
general and have less structure than either.

118

for other principals. In our framework, delegations may change over time. Closure principals
are useful because they allow us to capture trust relationships as they exist at particular moments
in time. In particular, closure principals are a principled mechanism to describe how author-
ity captured by a context contract should be combined with the current authority environment
based on which parts of the closed over authority environment are trusted by principals in the
current authority environment.

Rule closure-left shows that W, ; d + a > (W, « b) holds when there is some principal c such that
at the time of closure creation (i.e., with delegation set W), ¢ believed that a acted for b (premise
W:; ¢ +a > b, and moreover, right now (i.e., with delegation set W;) principal d trusts princi-
pal (W2 < ¢) (premise W, ; d+ (W, « ¢) > d). Typically, c and d are the same principal, meaning
that d-at-time-W, trusts the decisions made by d-at-time-W,. Rule closure-right is similar and
W, ; d+ (W, > a) > b holds when there is some principal ¢ such that at the time the closure was
taken ¢ believed that a acted for b (premise W, ; c+a > b), and principal d trusts c-at-time-W,
(premise W, ; d+ (W: < ¢) > d).

To query whether a particular set of delegations satisfies an acts-for relation, we use a proof
search algorithm adapted from FLAM [6]. We give examples of using delegations to implement
different authorization mechanisms in Section 5.3.

Based on this logic, we represent an authority environment as:
1. a principal, who is responsible for the current execution context, and
2. a delegation set, which records the current trust relationships between principals.

The latter has two sub-parts: a global, mutable delegation set, and a set of delegations that are in

place only for a currently executing context.

119

vi=...|la|b|c|d|a|B|del| W
e u=....| (actions (act ...) e) | new-principal | new-dimension
| (singletone)|(eUe)|(e>e)|(exe@e¢)|(eere>e)| (foldeee)
| (top?e) | (bottom? e) | (proj? e) | (pcpl e) | (dime) | (left e) | (right e) | (label e)
7u=....| Prin| Dim | Del | DelSet
act := (actionx : 7 ([y : 7] ...) ce ae)

(check: cee add: cee remove: cee set!-principal: cee
closure-principal: cee closure-delegations: cee)
ae := (check: aee add: aee remove: aee scope: aee
setl-principal: aee set-principal?: aee principal: aee)
cee := e | (authlet (x cee) cee) | current-principal | current-delegations
aee ::= ¢ | (authlet (x aee) aee) | current-principal | current-delegations
| closure-principal | closure-delegations

a,bc,du=pEriMP)|T|L]|@>a)|(avb)|(@aAnb)| (W-a)| (W<« a)
del:=(vyv @)
Wa={del ...}
Eu=...|(singletonE) | (EVe)| (WUE)|(E>e)|(v>E)|(EVe)|(WWE)|(EAe)| (vAE)

|(Eere>e)|(vEre¥*e)|(vv-E¥%e)| (vv-v%E)
| foldEee)| (foldvEe) | (foldvvE) | (top? E) | (bottom? E) | (proj? E)
| (pepl E) | (dim E) | (left E) | (right E) | (label E)

=)
[

Figure 45: Syntax extensions for authorization contracts.

5.2.3 AUTHORIZATION CONTRACTS

Using authority environments, we can now introduce authorization contracts. Authorization
contracts specialize context contracts in two ways. First, they prevent interference from untrust-
worthy code by using parameters that the rest of the program does not have access to. Second,
they use a high-level representation of authority environments rather than directly manipulating
parameters. Authorization contracts provide a structured way to describe how the underlying
context contracts should manipulate authority environments.

Authorization contracts are defined as monitor actions using the define-monitor form
(Section 5.1). In this section, we model a pared-down version of define-monitor as an ex-
tension to the language model from Section 5.2.1. The extension, given in Figure 45, introduces

new types, constructors, and operations for principals, delegations, and delegations sets, includ-

120

I'; 2 + new-principal : Prin I; 2+ (prim P) : Prin I 2+71:Prin I 2+ 1:Prin

I X +e; :Prin
I'; 2+ e;: Dim

I'; 2 + new-dimension : Dim I; 2+ (dim D) : Dim I 2+ (e; ® e) : Prin

I; X +e; :Prin I'; Z+e; :Prin I; X+ e; : DelSet I'; e, : DelSet
I';2re;:Prin I';2 e Prin I';2 e :Prin I';2 e :Prin

I 2+ (e Ve : Prin I 2+ (e;ANey) : Prin I; 2+ (e; < e2) : Prin I; 2+ (e, — e) : Prin

I''X+e:Prin I''X+e:Prin I''X+e:Prin

I; 2+ (top?e) : Bool I; 2 + (bottom? ¢) : Bool I; 2+ (proj? e) : Bool

I';X+e:Prin

I; 2+ (peple) : Prin

Figure 47: Types for authorization contracts.

ing an expression that evaluates an acts-for judgment: (e e e > e). Additional typing rules for
the language extension are given in Figure 47 and Figure 48. The define-monitor form cor-
responds to the (actions (act ...) e) form of the extended model, where act is an action specification.
Each action speciﬁcation (action x : 7 ([y : 7,] ...) ce ae) has a name x, a set of arguments ([y : 7,] ...),
a type (7), and two terms, ce and ae, that define the actions #:on-create and #:on-apply
hooks.

The term for the #: on-create hook has the form
(check: cee add: cee remove: cee set!-principal: cee closure-principal: cee closure-delegations: cee)

and specifies what the authorization contract should do when the contract is applied to a value. In

121

I'2+e:Prin I; 2+ e:Del I; 2+ e:Del I; 2 +e:Del

I; 2+ (dime) : Dim I; 2+ (lefte) : Prin I; 2+ (right e) : Prin I; 2+ (label e) : Prin

I'; 2+ e; : DelSet
I; 2+ e:Del I; 2+ e: Del I'; 2+ e, : DelSet

I 2+{e...}: DelSet I; 2 + (singleton e) : DelSet I'; 2+ (e; U ey) : DelSet

I'; X+ e; : DelSet

I'; X e : Prin
I; 2+ e; : DelSet I'; Z+e;: Prin
I'; 2+ e, : DelSet I'; X +e,: Prin

I; 2+ (e - e2) : DelSet I 2+ (ejexe; ¥ ey : Bool

IiXrce .. I''X+e; :(Del- (r- 1)
I 2+ ae I; X+ e, : DelSet
I'lx » (1, contract), ...]; Z+e: 7T IiZre;:t
I; X+ (actions ((action x : 7, ([y : 7,] ...) ce ae) ...) e) 1 T I+ (foldejeyes): T

I; 2+ e; : (Unit > Bool)
I'; 2+ e : (T param)
I; 2 +e;: (Unit— 1)

I (e e« e3)

Figure 47: Types for authorization contracts (Continued).

122

T; X+ cee; : Del
I; X+ cee, : DelSet
I; X+ cee; : DelSet

I'; X+ ceey : Prin

I'; X+ cees : Prin
I; 2+ cees . DelSet

I'; 2 + (check: cee; add: cee, remove: cee; set!l-principal: cee.
closure-principal: cees closure-delegations: cees)

I; 2+ aee; : Del

I; 2+ aee, : DelSet

I; 2 + aee; : DelSet

I; 2+ aee, : DelSet
I'; 2+ aees : Prin
I'; 2 + aees : Bool

. I; 2+ :
I'; 2+ aee; : Prin cee; : T;

I'x+~ 11]; 2+ ceex . T2

I'; 2 + (check: aee; add: aee; remove: aee; scope: aee,
setl-principal: aees set-principal?: aees principal: aee;) I; 2+ (authlet (x cee;) ceez) : 12

I'; 2+ current-principal : Prin I; 2 + current-delegations : DelSet

I'; 2 + closure-principal : Prin T; X + closure-delegations : DelSet

Figure 48: Types for authorization contracts (Continued).

123

particular it describes how to modify each part of the authority environment. Its field check: ac-
cepts a delegation (a > b @ c¢) which will be used to construct an acts-for judgment W; c+a > b,
where W is the current delegation set. If this judgement does not hold, a contract error is raised
blaming the client of the contract. Field add: accepts a set of delegations to add to the global
delegation set. Field remove: accepts a set of delegations to remove from the global delegation
set, if present. Field set!-principal: changes the current principal to the given principal. Fields
closure-principal: and closure-delegations: accept a principal and a set of delegations, respec-
tively, and record the principal and delegations for use upon a call to the contracted function.
Terms in each of these six fields can access the pieces of the current authority environment using
current-principal and current-delegations.

The term for the #: on—-apply hook has the form
(check: aee add: aee remove: aee scope: aee set!-principal: aee set-principal?: aee principal: aee)

and specifies what the authorization contract should do upon a call of the contracted function.
Similar to ce terms, it allows the configuration of the contract’s behavior with seven fields. As
before, check: accepts an delegation and raises a contract error if the corresponding acts-for
judgment does not hold. Likewise, fields add: and remove: mutate the global delegation set, and
field set!-principal: changes the current principal. The scope: field accepts a set of delegations, but
this set is installed only for the dynamic extent of the current function call, rather than added
to the global delegation set. The set-principal?: field requires a boolean value. If that value is #t,
the current authorization environment is extended with a principal for the dynamic extent of
the function call. This (1) allows changing the principal visible within the extent of the func-
tion call and (2) prevents contracts that change the principal during the extent of the function
call from modifying the principal of the enclosing context. In addition to accessing the current

principal and delegations from the authority environment, the seven fields of an ae term can ac-

124

translate[(actions (act ...) €), Xp, Xay Xsy Xeps Xeds Xeurps Xeurall =

(let (x, (make-parameter 1))
(let (x, (make-parameter { }))
(let (x, (make-parameter{ }))

(let (x,, (make-parameter T))
(let (x.. (make-parameter{ }))

(let (xcup (ref 1))
(let (xeuwa (ref { }))
translate-actions[(act ...), X,, Xa, X5, Xeps Xedy Xeurps Xeuras €1)))))))
translate-actions[[(), X,, Xa, Xs, Xcps Xeds Xeurps Xeuras €] =
e
translate-actions[((action x : 7 ([x, : 7.] ...) ce ae) act ...), Xp, Xay Xg, Xepy Xedy Xeurpy Xeurds €] =
(let (x translate-action[[(action x : 7 ([x, : T.] ...) ce ae), Xp, Xa, Xsy Xepy Xeds Xeurps Xeurall)
translate-actions[(act ...), X, Xa, Xs, Xeps Xedy Xeurps Xeurdy €])
translate-action[(action x : 7 ([x, : Ta] [x4 2 @ Tu 2] ...) €€ ae), Xp, X, Xy Xepy Xeds Xeurps Xeurall =
A(y:7)
translate-action[(action x : 7 ([x.2 : T.2] ...) ce ae), Xp, X4, Xs, Xeps Xeds Xeurps Xcurall)
translate-action[[(action x : 7 () ce ae), X,, Xa, X5, Xcps Xedy Xeurps Xeurd) =
(ctxlc: T
translate-ce-check[ce, x,, X, X5, Xcurps Xcurall
translate-ce-cpllce, Xp, X4, Xeps Xeurps Xeurall
translate-ce-cdl[ce, Xca, Xeurps Xcurdl
translate-ae-checklae, x,, X4, X5y Xepy Xcds Xeurps Xeurall
translate-ae-sf[ae, Xy, Xy, Xay Xeurpy Xcurds Xepy Xedl
translate-ae-pllae, X,, Xcurps Xcurdy Xepy Xeall)

Figure 49: Compiling authorization contracts to context contracts.

cess the principal and delegations closed over by the contract with terms closure-principal and
closure-delegations.

To give a detailed semantics for actions terms, we use the compilation function given in Fig-
ure 49 that replaces actions expressions with terms that explicitly construct context contracts.
The compilation uses five parameters: one each for the current principal, global delegation set,
and scoped delegation set, plus a pair to record the closed-over principal and delegations. Each
actions term generates a fresh set of parameters, preventing separately defined monitors from in-
terfering with each other. Each action term within the actions term compiles to a single context

contract that closes over the fresh parameters. The hooks provided for each action are compiled

125

translate-ce-check[(check: cee; add: cee, remove: cee; set!-principal: cee, =
closure-principal: cees closure-delegations: cees),
-x[n Xdy Xsy xc’urps x('urd]]
(A (x : Unit)
(let (x (xeup = (? x,)))
(let (x (xeura = ((? xa) U (? x,))))
(let (tocheck translate-cee[[cee;, X urp, Xeural)
(let (x.; (left tocheck))
(let (x., (right tocheck))
(let (x., (label tocheck))

((' xvurd) xc_p = xc_l > xt_r))))))))
translate-ce-cp[(check: cee; add: cee, remove: cee; set!l-principal: cee, =
closure-principal: cees closure-delegations: cees),
Xpy Xdy Xeps Xeurps Xeurdl
(N (x :Unit) #) >
Xep
< (A (x:Unit)
(let (to-add translate-cee[[ceez, Xcup, Xcural)
(let (to-remove translate-cee[[cees, Xcurps Xcural)
(let (setprin translate-cee[cees, Xcurp, Xeural)
(let (x (x4 < (((! xewa) U to-add) - to-remove)))
(let (x (x, < setprin))
translate-cee[cees, Xeurps Xeural)))))))
translate-ce-cd[(check: cee; add: cee; remove: cee; set!l-principal: cee; =
closure-principal: cees closure-delegations: cees),
Xedy xcurpy x('urd:[l
((\ (x : Unit) #t) >
Xed
<« (A (x : Unit)
translate-cee[cees, Xcurpy Xewrall))
translate-ceelle, Xcup, Xcural =
e
translate-cee[[(authlet (x cee;) ceez), Xeurps Xcurall =
(let (x translate-cee[[cee;, Xcurp, Xeural)
translate-cee[cees, Xeurps Xeura])
translate-cee[current-principal, X, Xl =
(M xurp)
translate-cee[current-delegations, X, Xcual =
(! Xeurd)

Figure 50: Compiling ce expressions.

126

translate-ae-checkf[(check: aee; add: aee, remove: aee; scope: aeey =
set!l-principal: aees set-principal?: aees principal: aee7)
xpy Xdy Xsy x(p, Xedy xcurp, x(‘urd]]
(A (x : Unit)
(let (x (Xaurp = (? x3)))
(let (x (xama = ((? xa) U (? x,))))
(let (clop (? x.,))
(let (clod (? x.4))
(let (tocheck translate-aee[[aee;, Xcurps Xeurds Xeps Xcall)
(let (x., (left tocheck))
(let (x., (right tocheck))
(let (x., (label tocheck))
((' xrurd) ch) = X1 7 x(‘ r))))))))))
translate-ae-p[[(check: aee; add: aee, remove: aee; scope: aee; =
set!l-principal: aees set-principal?: aees principal: aee7)
xp, xcurpa Xcurds x(pa x(d]]

((A (x : Unit)
tranSIate'aee[[aeeéa xcurpy Xeurds xrpy xrd]]) =
Xp
< (A (x - Unit)

translate-aee[aees, Xcurps Xecurdy Xeps Xeall))
translate-ae-s[(check: aee; add: aee, remove: aee; SCOpe: aee, =
set!l-principal: aees set-principal?: aees principal: aee;),
xpy Xsy Xdy xCLle! Xcurdy xcpy xcd]]
((\ (x : Unit) #) >
Xs
« (A (x : Unit)
(let (to-add translate-aeel[aeez, Xcurp, Xcurds Xeps Xcall)
(let (to-remove translate-aee[aees, Xcurp, Xcurds Xeps Xcal)
(let (news translate-aeel[aees, Xcup, Xeurds Xeps Xedll)
(let (x (x, «< translate-aee[aees, Xcurps Xcurds Xeps Xeall))
(let (x (x4 < (((! xeua) U to-add) - to-remove)))
news)))))))

translate-aeelle, Xcurp, Xeurds Xepy Xeall =

e
translate-aee[(authlet (x aee;) aeex), Xcup, Xeurds Xepy Xeall =

(let (x translate-aeellaee;, Xcurps Xcurdy Xepy Xeall)

translate-aee[aeez, Xeurpy Xcurdy Xepy Xedl)

translate-aee[current-prinCipal, Xcuyp, Xcurds Xeps Xeall =

(' xcurp)
translate-aee[current-delegations, Xcup, Xcud, Xeps Xcall =

(! Xeura)
translate-aee[closure-princpal, Xeup, Xcurds Xeps Xeall =

(? xclop)
translate-aee[closure-delegations, X ., Xcud, Xeps Xeall =

(? Xctoa)

Figure 51: Compiling ae expressions.

127

into a set of guarded parameterization expressions that access and update the parameters that

make up the authority environment.

The hooks for defining actions are sufficiently flexible to implement a variety of access con-
trol mechanisms (Section 5.3). Here, we briefly describe some of the ways programmers can

configure authorization contracts.

MUTABLE AUTHORITY Many access control mechanisms have a global policy that changes over
time. For example, in discretionary access control, users can grant or revoke access to their

resources. We can implement this with a contract that adds or removes (global) delegations.

DYNAMICALLY SCOPED AUTHORITY An authority closure can inherit the authority environment

from its calling context by ignoring the authority environment it closes over.

“LEXICALLY” SCOPED AUTHORITY An authority closure can isolate itself from the authority of
its calling context by replacing the authority environment at a call site with the authority that it

closes over.

Moreover, different access control mechanisms may require authorization contracts that blend
these different strategies. For example, implementing setud-like authority closures requires
capturing the principal but not the delegations the closures close over. Otherwise, updates to the

global discretionary access control policy would be forgotten when a setuid function executes.

5.3 PUTTING AUTHORIZATION CONTRACTS TO WORK

As evidence of the usefulness and expressiveness of the framework, we implemented a vari-
ety of existing access control mechanisms including discretionary access control, stack inspec-

tion [123], history-based access control [2], and object capabilities [80]. Before delving into

128

(define-monitor monitor-name
(monitor-interface

action-name ... extra-name ...)
(monitor-syntax-interface
syntax-name ...)
(action

[action-name (action-var ...)
#:on-create on-create-hook
#:on-apply on-apply—-hook]
cel)

(extra
(define extra-name extra-body)
cel)
(syntax
(define-syntax syntax-name syntax-body)

ced))

Figure 52: The define-monitor form.

these monitors, we further explain define-mon1itor, the main linguistic tool that our frame-

work provides.

5.3.1 THE define-monitor FORM

Figure 52 shows the complete syntax of define-monitor. It has two sections in addition to
the action section we have seen before: extra and syntax. The first defines extra functions
and contracts that the programmer wants to include in the interface of a monitor. These are
usually contracts that combine two or more actions together or contracts that fix the arguments
of an action. The syntax section defines macros that serve as syntactic abstractions over the
monitor’s interface, for example, to automate the placement of authority contracts when defin-

ing a function. We give examples of definitions in the extra and syntax sections later. The

129

monitor-interfaceandmonitor-syntax-interface clauses specify which elements are
available to users of the monitor. After defining a monitor monitor-name, a client can instanti-
ate it with (run monitor-name). This creates a fresh monitor, i.e., one with a fresh authority
environment and contracts.

The most complicated part of defining a monitor is writing the two hooks for each monitor
action. To facilitate this, we provide two functions, do-create and do-apply, that simplify
this process. Each function has optional keyword arguments corresponding to the fields of an
action form in Section 5.2.3. The functions provide default values for any argument not specified.
Thus, the programmer need only specify the results of the hooks they care about. For instance,
the default value for the argument with keyword # : check seen in Figure 35 is an acts-for query

that is always satisfied.

5.3.2 A STACK INSPECTION MONITOR

In stack inspection [123], code obtains permissions based on static properties such as the package
it belongs to. At run time, code can choose to enable its static permissions making them eligible
for satisfying an access control check. Before a sensitive operation, stack inspection checks for
the presence of a particular permission by walking the run-time call stack until a frame from
code that has enabled the permission is found. To prevent luring attacks [123], stack inspection
additionally requires that all execution contexts between the enabled permission and the autho-
rization check have the required static permission. Despite this protection, untrusted code may
be able to influence the program even if its frames are no longer on the stack. As a result, modern
adaptations of stack inspection provide additional support for capturing the permissions of the
stack at some point in an execution and reinstating them for a later check. For example, Java’s
stack inspection implementation provides a primitive AccessController.getContext()

that encapsulates the access rights of the context where it is called.

130

Implementations of stack inspection provide the following primitives: checkPermission,
which checks that a frame on the stack has the required permission enabled and that all inter-
vening frames have the required static permission; doPrivileged, which enables the static
permissions of the current code for its dynamic extent, possibly using captured permissions in-
stead of the current permissions; and getContext, which captures the permissions of the stack
at some point in execution. In addition, the implementation must provide a mechanism to as-
sociate static permissions with code.

To realize stack inspection using authorization contracts, a monitor must provide (1) actions
that implement these primitives and (2) a way to grant static permissions to code. A monitor
enforcing stack inspection is given in Figure 53.

In the monitor, the actions for (1) are check-permission/c, do-privileged/c, and
context/c. To track which permissions are held by code on the stack, we use the authority
environment to grant permissions to individual frames, each represented by a distinct principal.
Each stack frame has three projections that are used to manage its authority. The static pro-
jection indicates the permissions granted to the code statically. The enable projection contains
permissions enabled for this frame. The act1ive projection represents permissions that would
satisfy a privilege check, that is, those permissions which are both enabled and statically granted.
An access control check for a particular permission succeeds if the active projection of the
current frame acts for the corresponding projection of the T principal.

We use one additional monitor action, privileged/c, to indicate the static permissions
a piece of code possesses and to enforce that a stack frame’s active projection acts for exactly
those permissions for which checkPermission should succeed. Action privileged/c takes
a list of permissions (each of which is a projection of the T principal). On an #:on-apply
event, it creates a new principal callee to represent the new stack frame and adds delegations

initializing these projections for the dynamic extent of the function:

131

(define-monitor stack-inspection
(monitor-interface make-permission permission? check-permission/c do-privileged/c
context/c unprivileged/c privileged/c coerce-to-unprivileged)
(monitor-syntax-interface define/rights)
(action #:search (list use-static search-delegates-left)
[check-permission/c (perm)
#:on-create (do-create)
#:on-apply
(do-apply #:check (=@ (= current-principal active) (= T perm) (= T perm)))]
[privileged/c (perms)
#:on-create (do-create #:check (=@ current-principal T T))
#:on-apply
(let* ([callee (pcpl (gensym 'frame))]
[static-principal
(normalize (disj (list->set (map (A (p) (= T p)) perms))))]
[scoped-delegations
(list (=@ (> callee static) static-principal T)
(=@ (> callee enable) (> current-principal active) current-principal)
(>@ (> callee active) (v (= callee enable) (= callee static)) callee))])
(do-apply #:add-scoped scoped-delegations #:set-principal callee))]
[do-privileged/c
#:on-create (do-create)
#:on-apply
(let ([enable (>@ (> current-principal enable) (> current-principal static)
current-principal)])
(do-apply #:add-scoped (list enable)))]
[context/c
#:on-create (do-create #:add-lifetime (list (=@ (« T current-delegations) T T)))
#:on-apply
(let* ([callee (pcpl (gensym 'frame))]
[closure-pcpl (— closure-principal closure-delegations)]
[scoped-delegations
(list (=@ (> callee static) (= closure-pcpl active) T)
(=@ (> callee enable) (> current-principal active) current-principal)
(>@ (> callee active) (v (> callee enable) (= callee static)) callee))])
(do-apply #:add-scoped scoped-delegations #:set-principal callee))]

[unprivileged/c

#:on-create (do-create)

#:on-apply (do-apply #:set-principal 1)])
(extra

(define coerce-to-unprivileged
(make-contract #:name "coerce-to-unprivileged"
#:projection
(A (blame) (A (val)
(cond
[((disjoin privileged/c? unprivileged/c? context/c?) val) val]
[(procedure? val) (((contract-projection unprivileged/c) blame) val)]

[else val]))))))
(syntax

(define-syntax define/rights ...)))

Figure 53: A stack inspection monitor.

132

(=@ (> callee static) permissions T)

(>@ (= callee enable) (= current-principal active)
current-principal)

(>@ (= callee active) (v (= callee enable) (= callee static))
callee)

These delegations give callee the specified static permissions, assert that the new frame inherits
the active permissions from the previous frame, and require that the callee has both static
and enabled permissions to make them active.

Tracking the authority of each frame in this way mirrors the information that can be found
by walking the stack in a language with built-in support for stack inspection. Action check-
permission/c checks only that the active projection of the current principal acts for all of
the requested permissions. However, unlike security-passing style implementations of stack in-
spection [124], checking this acts-for relation requires validating delegations for each frame on
the call stack between when the permission was enabled and when check-permission/c was
called.

Action do-privileged/c enables the current frame’s static permissions by adding a dele-
gation from the frame’s static projection to its enable projection for the dynamic extent of
the wrapped function.

Action context/c is used to capture the permissions of the current stack for future permis-
sion checks. It captures the current authorization environment when it is attached to a function.
When it is invoked, it installs the same set of delegations as privileged/c, except that the first
delegation that grants static permissions gets replaced with a delegation that derives permissions

from the active permissions of the captured frame at the time they were captured:

(>@ (> callee static)
(> (— closure-principal closure-delegations) active)
1)

The closure principal on the right hand side of this delegation acts for all of the principals that

133

closure-principal acted for when the closure was created.

The monitor must also provide (2) a way to grant static permissions to code. Because Racket
does not have class-loading facilities that would allow permissions to be granted to code at load-
time, we use macros to attach authorization contracts to code that should have static permissions.
In particular, the monitor provides a new definition form define/rights defined in its syn-
tax section. This form works like the define form, but takes two additional arguments: a set of
permissions and a contract to apply to the definition. It defines a function wrapped with the given
contract and a privileged/c contract. In addition, the macro define/rights coerces any
function arguments or free-variables appearing in the body of the function to authority closures
by applying an additional contract unprivileged/c, which is defined in the extra section of
the monitor. Action unprivileged/c switches to the L principal for the dynamic extent of the
closure it wraps, preventing any check-permission/c actions from succeeding. Thus, these
contracts prevent functions that were not defined with define/rights from using code that
requires permissions.

Figure 54 shows an example program using the stack inspection monitor. There are three
functions defined using define/rights. Two of these functions are trusted to access the
filesystem: read-f1ile and read-privileged. However, read-file should not be used di-
rectly, so it checks that the filesys permission has been enabled by one of its callers. Function
read-privileged enables the filesys permission, but only calls read-fileif the fileis
safe to read. Function malicious does not have the filesys permission but attempts to read
"/etc/passwd' anyway, so invoking this function results in a contract violation. The contract
violation says that the stack frame corresponding to the call to read-f1ile does not have the

necessary permission filesys.

134

(require authorization-contracts authorization-
contracts/monitor/stack-inspection)

(run stack-inspection)

(define filesys (make-permission 'filesys))
(define net (make-permission 'net))

(define/rights (read-file file) (filesys)
(check-permission/c filesys)
void)

(define/rights (read-privileged file) (filesys)
do-privileged/c
(if (safe? file) (read-file file) #f))

(define/rights (malicious) (net)
any/c
(read-file "/etc/passwd"))

> (malicious)
read-file: contract violation;
(> frame98139 active) # (= T filesys) @ (= T filesys)
in: the 1st conjunct of
the 1lst conjunct of
(and/c
(and/c check-permission/c privileged/c)
(membrane/c
"coerce-to-unprivileged"
"coerce-to-unprivileged"))
contract from: (definition read-file)
blaming: top-level
(assuming the contract is correct)
at: eval:6.0

Figure 54: Using the stack inspection monitor.

135

5.3.3 A HISTORY-BASED ACCESS CONTROL MONITOR

Abadi and Fournet [2] observe that stack inspection fails to protect against attacks where the
influence of untrusted code is no longer apparent from the call stack. As a remedy, they propose
history-based access control (HBAC). In HBAGC, the rights of an execution context depend not
just on the rights of code currently on the execution stack, but also on the rights of all code that
has previously been executed. HBAC has two primitives: grant and accept. The grant prim-
itive has the same behavior as the do-privileged operator we implement for stack inspection.
accept allows a component to take responsibility for code in its dynamic extent. After accept
returns, it restores any privileges that were present before it was invoked.

Our implementation of a monitor for HBAC is very similar to the monitor for stack inspection.
The primary difference between the two monitors is the definition of action privileged/c. In
the HBAC monitor, in addition to initializing the three projections for the new frame, its #: on-
apply event walks the call stack by reading the current delegations. For every frame on the
call stack, it adds a disjunct with the callee’s static permissions to the delegation that granted

permissions from that frame’s caller. For example, the delegation:
(=@ (= parent enable) (> grandparent active) grandparent)

is replaced with the delegation:
(>@ (> parent enable) (v (= grandparent active) (> callee static))
grandparent)
This means that future attempts to use the parent frame’s permissions will be restricted to what-
ever rights the callee had, unless the parent frame specifically vouches for an action by en-
abling its own permissions.
We define accept/cin the extra section. accept/c uses the accept-context/c action

to create an authority closure around its continuation. When the function accept/c wraps

136

returns, accept/c invokes this continuation, restoring the authority environment before the

wrapped function was called.

5.3.4 AN OBJECT CAPABILITY MONITOR

Authority closures are closely related to the idea of capabilities. A capability both designates
a resource and confers the authority necessary to use it [20]. An authority closure designates
resources (those accessed by the wrapped function) and captures the authority that should be
used to access those resources. Any code that can invoke an authority closure can exercise the
authority of the closure, though that authority is attenuated by the functionality of the closure
itself. For example, in our web application example, Login is a capability that allows any code
that invokes it to use the “root” user’s authority; however, the implementation of the login
function ensures that this authority can only be used to switch to a different user after supplying
the correct password.

Recall that in an object-capability language, all sensitive resources are represented as objects
and access to those objects is controlled by structuring the language to limit the ways that objects
acquire references to other objects [80]. Specifically, an object-capability language allows an

object to acquire a reference to another object only in the following ways:
1. by initial conditions: two objects may reference each other before a computation begins,
2. by parenthood: the creator of an object is initially the only object with a reference to it,

3. by endowment: an object can close over references to objects available in its parent’s en-

vironment, and

4. by introduction: an object can receive references to other objects passed as arguments to

its methods or returned from methods it invokes.

137

(define-monitor ocap
(monitor-interface capability/c unprivileged-capability/c capability/c?
unprivileged-capability/c? coerce-to-unprivileged-capability)
(action #:search (list search-caps search-delegates-left)
[capability/c
#:on-create
(let* ([child (pcpl (gensym 'capability))]
[parent current-principall]
[parenthood (>@ (> parent caps) (> child invoke) child)]
[endowment
(>@ (> child caps) (— (> parent caps) current-delegations) parent)]
[validity (>@ (<« parent current-delegations) parent parent)])
(do-create #:add-lifetime (list parenthood endowment validity)
#:closure-principal child))
#:on-apply
(let ([introductions
(map (A (arg) (let ([arg-cap (cdr arg)])
(>@ (> closure-principal caps) (> arg-cap invoke) current-principal)))
(filter id closure-args))]
[return-hook (A (results)
(let ([result-introductions
(map (A (res)
(make-lifetime (> (> current-principal caps) (> (cdr res) 1invoke))
closure-principal (car res)))
(filter 1id results))])
(do-return #:add result-introductions)))])
(do-apply
#:check (=@ current-principal (> closure-principal invoke)
(> closure-principal invoke))
#:add-lifetime introductions
#:set-principal closure-principal
#:on-return return-hook))]
[unprivileged-capability/c
#:on-create
(let* ([child (pcpl (gensym 'unprivileged))]
[parent current-principal]
[parenthood (>@ (> parent caps) (> child invoke) child)])
(do-create #:add-lifetime (list parenthood) #:closure-principal child))
#:on-apply ; the same as #:on-apply for capability/c])
(extra
(define coerce-to-unprivileged-capability
(make-contract #:name '"coerce-to-unprivileged-capability"
#:projection (A (blame) (A (val)
(cond
[((disjoin capability/c? unprivileged-capability/c?) val) val]
[(procedure? val)
(((contract-projection unprivileged-capability/c) blame) val)]
[else vall)))))))

Figure 55: An object capability monitor.

138

We built a monitor to enforce these restrictions. This monitor, shown in Figure 55, defines
two actions, capability/c and unprivileged-capability/c, which is the same as the
capability/c, but does not grant any initial authority. These actions enforce capability safety
by creating a new principal for each capability and using delegations to specify when one ca-
pability has the authority to invoke another. Their #:on-create hooks handle parenthood
and endowment and their #: on-apply hooks handle introduction. Parenthood amounts to a

delegation:

(>@ (= parent caps) (= child invoke) child)

Similarly, endowment closes over the current authority of the parent and grants it to the child:

(=@ (> child caps) (— (= parent caps) current-delegations) parent)

We must also assert that the parent authorizes the use of its closed-over delegations for the rest

of the execution:

(=@ (<« parent current-delegations) parent parent)

Introduction is implemented by adding additional delegations granting callees authority over

arguments they are passed, and vice versa for return values.

5.4 CASE STUDIES

To evaluate the use of our framework in practical applications, we developed three case studies.
The first adds simple authorization contracts to the implementation of a card game to ensure that
player’s moves affect only the parts of the game state they control. The second secures a plugin
interface of the DrRacket development environment and demonstrates how the flexibility of the

framework can support complex security mechanisms. The third, which mirrors the example

139

from Section 5.1.2, replaces authorization checks in a web application with authorization con-
tracts. In addition to evaluating the expressiveness of authorization contracts in each case study,
we evaluated the performance of our framework. The experiments were conducted on a Mac-
Book Pro with a 2.6 GHz Intel Core i5 and 16GB of RAM running Mac OS X 10.11 and Racket
6.4.0.9.

In the first two case studies, authorization contracts have significant impact on the perfor-
mance of the benchmarks. However, both case studies are worst case scenarios: they have no
existing code implementing access control (and so we are strictly adding functionality), and af-
ter adding contracts, they invoke many access control checks (tens of thousands in the case of
the card game) while performing cheap operations. Moreover, in the DrRacket case study, the
absolute overhead for each benchmark due to authorization contracts is less than 45ms, but the
relative overhead is high since the baseline running time is less than 15ms. The third case study
replaces existing access control checks with authorization contracts, with negligible impact on
performance. Our implementation is a prototype, and we anticipate that optimizations in the

implementation of our contracts can further reduce their overhead.

5.4.1 PREVENTING CHEATING IN A CARD GAME

We have used authorization contracts to enforce a security policy for an implementation of the
card game Dominion*. The exact rules of Dominion do not matter for our purpose, except that
each player collects cards in a local deck and attempts to outscore the rest of the players by playing
cards from their deck. During each turn, players can play cards from their deck to either purchase
additional cards or attack other players, forcing them to discard some of their cards.

In this implementation, each player is a program that runs in its own process and responds

#The implementation is part of the teaching material of a long running undergraduate Functional
Programming course.

140

automatically to messages from a central broker. The broker maintains the shared inventory of
cards and a mirror of each player’s local deck. Players perform moves by sending messages to
the broker describing the move.

To perform a move, the player sends a message to the broker identifying a card to play. In re-
sponse, the broker updates its copy of the game state to reflect the move and, if the move involves
an attack on another player, informs the other player of the attack. The other player then has an
opportunity to defend by choosing which card to discard and the broker again updates the game
state.

The broker represents the local deck of each player as an immutable record player and the
state of the game as an immutable structure game that holds a list of player records. The first
element in this list corresponds to the player who makes the next move. The broker is imple-
mented as a core drive function that delegates to two functions: move and defend. Both
functions perform functional updates to the relevant structures.

We enforce the policy that the broker only updates the current player’s deck or a defending
player’s deck. The monitor that enforces this policy specifies three authorization contracts: de-
privilege/c, which sets the principal for the dynamic extent of a function to L; (switch-
player/c name), which sets the principal for the dynamic extent of a function to the player
with name name; and (check-player/c name), which checks before calling a function if the
current principal is the player with name name.

To enforce the policy, we attach contract deprivilege/c to the function drive so that only
authorized code can modify the game state during the game. The contract for the game struc-
ture, game/c, gives the accessor functions of each field of the player records in the game the
contract (check-player/c name), where name is the name of the corresponding player. The

contract for the move function is

141

(->a ([game game/c] [turn any/c] [play any/c])
#:auth (game)
(switch-player/c
(player-name
(first (game-players game))))
(values [game-result-game game/c]
[turn-result any/c]))

and it authorizes the move function to act on behalf of the current player. The contract says
that the function has three arguments: a game structure, a turn structure describing the actions
taken by the player so far, and a play structure indicating the desired move. The function returns
two results: an updated game structure and an updated turn structure. The #:auth keyword
applies an additional contract to the entire function depending on the game argument, which is
an authorization contract that changes the current player to whichever player appears first in the
game structure.

The contract for defend is

(->a ([player player/c] [defense any/c])
#:auth (player) (switch-player/c (player-name player))
[result player/c])
which similarly allows the function to update the state of the player who was attacked.
We created 10 benchmarks for the Dominion case study that each consists of a simulated game
with 2-7 players. Adding authorization contracts increases running time by 1.3-1.7 x at both the

median and 99th percentile.

5.4.2 SECURING A PLUGIN INTERFACE

We wrote a monitor to protect DrRacket from malicious or buggy third-party key bindings. First,
we explain aspects of DrRacket’s design related to key bindings. Keystrokes sent to DrRacket are

dispatched as method calls to a text% object which encapsulates the state of the editor. This

142

object has methods that access and modify parts of DrRacket. For instance, the get-text
method returns the content of the editor, while the set-padding method changes the inset
padding used to display the editor’s content. Each text% object has a keymap% object that
stores registered key bindings and maps sequences of keystrokes to the action they trigger. A
keybinding action is an arbitrary Racket function of two arguments: the current text% object
and an event% object, which describes the event that triggered the action. On startup, DrRacket
populates its text% object’s key map with built-in key bindings. In addition, DrRacket registers
user-defined key bindings from configuration files. Keybinding actions can inspect and modify
almost any aspect of DrRacket through the text% object. This gives users a powerful interface
for customizing DrRacket but makes key bindings a source of vulnerabilities. For instance, a key
binding could accidentally erase the user’s code or snoop on the editing session.

Our monitor restricts which text% object methods a keybinding action can invoke. We group
methods of text% that can access or modify similar parts of DrRacket. For instance, methods
that write to the clipboard (e.g. cut and copy) belong to the same group while methods that
change how DrRacket displays content (e.g. set-max-width and set-1ine-spacing) be-
long to a second group. Each group has a corresponding privilege that is required to invoke the
group’s methods. For example, the privileges ReadClipboard and ChangeEditorView grant
access to the methods mentioned above. Methods can belong to multiple groups. Access con-
trol checks around each method verify that the authority of a calling execution context has the
necessary privileges.

In addition to methods that require specific privileges to invoke, text% has sensitive methods
that should only be invoked by another method of the text% object. For example, the on-
delete method should never be invoked directly as its correctness depends on DrRacket’s state.
Instead, key bindings should invoke the delete method that subsequently calls on-delete. To

support this use case, we require an additional privilege to call on-delete that is granted during

143

the dynamic extent of delete.

The stack-inspection-like access control mechanism we have described so far is not sufficient.
Some methods of text% install callbacks that are triggered by subsequent events. For example,
add-undo registers a callback that runs when the user wishes to undo the action of a key binding.
This callback should not run with the authority of its calling context, but instead should use the
privileges of the action that created it. To achieve this, we create authority closures around any
callbacks registered by an action.

Our monitor represents each privilege as a unique principal and represents sets of principals
as conjunctions and disjunctions of principals. It defines three actions: check/c, enable/c,
and closure/c. Upon an #:on-apply event, the first action consumes principal perms and
checks if the current principal has permissions that imply perms. Then the action switches the
current principal to a principal that only has permissions perms. When a function wrapped
with enable/c is applied, it switches the current principal to a principal that has the same per-
missions as the current principal augmented with perms. The #:on-create event of the third
action creates an authority closure. When the authority closure is applied, it reinstates the closed
over principal.

We use the actions of the monitor to define an authorization contract for the keybinding in-

terface:
(-=>a ([t text/c] [e (is-a?/c event%)])
#:auth () (check/c perms) any)
where perms is a principal which encodes the privileges we grant to the key binding and text/c
is the object contract we define for the editor’s text% object. text/c applies a contract to each
method of text% specifying whether the method enables some permission, requires some per-
missions, or creates an authority closure around one of its arguments. For example, text/c

gives the method blink-caret the contract (check/c ChangeEditorView). In essence,

144

text/c defines a security policy for the editor.

To assess the monitor’s performance, we ran a series of 30 benchmarks, adapted from Dr-
Racket’s test suite, that simulate a sequence of keystrokes that trigger built-in key bindings. We
ran these benchmarks with the monitor oft and on. When the monitor is on, the prototype
grants the minimum set of privileges necessary for each key binding. For each benchmark, we
measured the time required to retrieve and execute each key binding. Our measurements show
that the authority monitor increases median response time by 3-7x and increases response time
at the 99th percentile by 3-5 x. However, for an IDE, a response time fast enough for interactive

use is more important. Our prototype achieves this goal with a maximum response time of 53ms.

5.4.3 AUTHENTICATION IN A WEB APPLICATION

The Racket package system allows users to discover and install packages from a public index ser-
vice. Individual users can add new packages or update old ones by logging into the index service
web application, which is implemented using the Racket web-server. Requests to add or modify
packages are issued to the application as asynchronous http requests. The baseline implemen-
tation of the application uses macros to authenticate the user and perform any required access
control checks before processing the request. For example, the jsonp/pkg/modify endpoint
authenticates the current user and checks that they are an author of the package they are attempt-
ing to modify. This approach to access control is brittle, since it requires that the checks included
for each endpoint accurately capture the privileges required when processing the response.
Using authorization contracts, we are able to separate the tasks of authentication and autho-
rization in the index service web application. Rather than performing a different set of access
control checks for each endpoint, all endpoints now simply invoke an authenticate function
that checks whether the current session is valid and which user is logged in, then invoke a pro-

cedure to process the request, like the login function from Section 5.1.2. The access control

145

policies for sensitive operations like updating a package are enforced by adding authorization
contracts that implement the necessary checks to the web application’s data model. There are
two types of checks: (is-author/c pkg) which checks that the logged in user is an author
of package pkg, and is-curator/c, which checks whether the logged in user has “curator”
status, which allows them to mark particularly robust packages.

To evaluate the new implementation’s performance, we measured the latency of 1,000 repeated
requests to modify a package record. Replacing inline checks with authorization contracts has
minimal impact on performance. Median latency was 283ms for the baseline implementation
versus 281ms with authorization contracts. At the goP percentile, using authorization contracts

latency was 338ms versus 330ms with the baseline implementation.

5.5 RELATED WORK

The connection between scoping and access control has been implicit in prior work on security in
programming languages but has never been a central concept for extensible access control. Mor-
ris’ seminal paper “Protection in Programming Languages” [82] describes how lexical scope can
be used to create security abstractions within a program. More recently, the object-capability
paradigm has embraced lexical scope as an organizing security principle [80]. Wallach and Fel-
ten [124] note that “in some ways, [stack inspection] resembles dynamic variables (where free
variables are resolved from the caller’s environment rather than from the environment in which
the function is defined)” Phung et al. [87] use dynamic and lexical scoping to associate princi-
pals with executing code and closures in order to correctly enforce security policies on programs

that mix JavaScript and ActionScript code.

LANGUAGE-LEVEL SECURITY MECHANISMS Numerous language-level security mechanisms have

been proposed to support extensible access control including stack inspection [123], history-

146

based access control [2], capabilities [78, 80]. In Section 5.3, we show how several of these
mechanisms relate to our framework by demonstrating how they can be implemented using au-

thorization contracts.

REFERENCE MONITORS An alternative approach to language-level access control is reference
monitoring. Reference monitors observe the actions taken by a system and intercede to prevent
violations of a security policy [3]. They can enforce a large class of policies [99]. Inlined ref-
erence monitoring (IRM) weaves the implementation of a reference monitor into the program
being monitored [31]. Many implementations of inlined reference monitoring rely on aspects
to identify security relevant actions during program execution [9, 32, 33, 35, 54]. Policies sup-
ported by these tools typically focus on access patterns for sensitive resources. While policies
supported by our framework can be encoded this way, as in Erlingsson and Schneider’s IRM
implementation of Java stack inspection [32], policies where the authority of code depends on
application state require duplicating code, since relevant changes to the application’s state must
also be reflected in the state of the reference monitor. A further disadvantage of IRMs is that
they require a global transformation of the program to inline the security monitor. Because au-
thorization contracts are applied at component boundaries, our framework requires only local

modifications.

AUTHORIZATION LOGICS Authorization logics give a formal language for expressing access con-
trol policies [1, 16]. Authorization logics have been used to understand existing access control
mechanisms, including Java stack inspection [124]. Aura [53] and Fine [114] implement access
control using proof-carrying authentication, where proofs of formulas in an authorization logic
are used as capabilities [5]. Our access control logic is inspired by the Flow-Limited Autho-
rization Model [6], which uses projections to describe attenuated authority without requiring

additional constructs such as roles or groups.

147

CONTRACTS FOR SECURITY Previous work has used contracts to enforce limited access control
policies. Moore et al. [81] use contracts to constrain the use of capabilities in a secure shell script-
ing language. Dimoulas et al. [24] use contracts to control the flow of capabilities between com-
ponents in object-capability languages. Heidegger et al. [49] use contracts to specify which fields
of an object may be accessed by a component. However, each of these systems is specialized to
enforce a specific type of access control policy. Disney et al. [26] introduce temporal higher-order
contracts, which enforce that sequences of function calls and returns match a specification. Their
system supports arbitrarily powerful monitors, but like inlined reference monitoring, provides
limited support for writing complex access control policies like stack inspection or discretionary
access control. Scholliers et al’s computational contracts [100] can enforce a wide range of trace
properties on programs. Unlike authorization contracts and temporal higher-order contracts,

computational contracts use aspects to interpose on program events.

SCOPED ASPECTS FOR SECURITY Dutchyn et al. [29] enforce simple access control policies with
lexically and dynamically-scoped aspects. With additional aspect scoping mechanisms, Toledo
et al. [120] encode full Java stack inspection. While aspects can enforce a wide range of access
control mechanisms, authorization contracts offer linguistic support for implementing diverse
(and customized) access control mechanisms with ease. Doing the same with aspects, if possible,

requires brittle and complex encodings.

148

Conclusion

Writing programs that correctly address security requirements is difficult, since those require-
ments cut across many different parts of the program and are intrinsically tied to the program’s

structure. This dissertation argues that

Higher-order software contracts are an effective mechanism to specify and enforce
composable, easy-to-understand security properties.
Moreover, it argues that higher-order software contracts make it easier to write and debug secure
programs by expressing security requirements of components at their interfaces using languages
designed explicitly for this purpose.

To validate these claims, I present two separate approaches to the use of software contracts

149

for security. In the first, I demonstrate how contracts improve on existing design patterns for
languages whose security is based on the object-capability paradigm. Using this approach, we
developed a secure shell scripting language that offers its users a high assurance of security with-
out unduly burdening script authors. In the second, I develop a new type of software contract
called an authorization contract. Authorization contracts allow component authors to devise

custom access control mechanisms that address application-specific security concerns.

150

References

[1] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A Calculus for
Access Control in Distributed Systems. ACM Transactions on Programming Languages
and Systems 15(4), pp. 706-734, 1993.

[2] Martin Abadi and Cédric Fournet. Access Control Based on Execution History. In Proc.
Network and Distributed System Security Symposium, 2003.

[3] James P. Anderson. Computer security technology planning study. U.S. Air Force Elec-
tronic Systems Division, Deputy for Command and Management Systems, HQ Elec-
tronic Systems Division, ESD-TR-73-51, 1972.

[4] AppArmor. 1998. http://apparmor.net

[5] Andrew W. Appel and Edward W. Felten. Proof-carrying Authentication. In Proc. ACM
Conference on Computer and Communications Security, 1999.

[6] Owen Arden, Jed Liu, and Andrew C. Myers. Flow-Limited Authorization. In Proc.
IEEE Computer Security Foundations Symposium, 2015.

[7] John Barnes. High Integrity Ada: the SPARK Approach. Addison-Wesley Professional,
1997.

[8] Michael Barnett, Rustan K. Leino, and Wolfram Schulte. The Spec# programming sys-
tem: An overview. In Proc. Construction and analysis of safe, secure, and interoperable
smart devices, pp. 49-69, 2004.

[9] Lujo Bauer, Jay Ligatti, and David Walker. Composing Security Policies with Polymer.
In Proc. ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2005.

[10] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs,
Simon Peter, Timothy Roscoe, Adrian Schiipbach, and Akhilesh Singhania. The Multi-
kernel: A New OS Architecture for Scalable Multicore Systems. In Proc. ACM SIGOPS
Symposium on Operating Systems Principles, pp. 29—44, 2009.

151

http://apparmor.net

[11] Joachim Berg and Bart Jacobs. The LOOP Compiler for Java and JML. In Proc. Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Systems,

Pp. 299-312, 2001.

[12] Antoine Beugnard, Jean-Marc Jézéquel, Noél Plouzeau, and Damien Watkins. Making
components contract aware. Computer 32(7), pp. 38-45, 1999.

[13] Matthias Blume and David McAllester. Sound and complete models of contracts. Jour-
nal of Functional Programming 16(4), pp. 375-414, 2006.

[14] Alan C. Bomberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Norman Hardy,
Charles R. Landau, and Jonathan S. Shapiro. The KeyKOS Nanokernel Architecture. In
Proc. USENIX Workshop on Micro-Kernels and Other Kernel Architectures, 1992.

[15] Lilian Burdy, Antoine Requet, and Jean-Louis Lanet. Java applet correctness: A
developer-oriented approach. In Proc. International Symposium of Formal Methods Eu-

rope, pp. 422-439, 2003.

[16] Michael Burrows, Martin Abadi, and Roger M. Needham. A Logic of Authentication.
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 426(1871), pp. 233-271, 1989.

[17] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and poly-
morphism. ACM Computing Surveys 17(4), 1985.

[18] Pascal Cuogq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevostos, Julien Signoles, and
Boris Yakobowski. Frama-c. Software Engineering and Formal Methods, pp. 233-247,
2012.

[19] Olivier Danvy and Andrzej Filinski. Abstracting Control. In Proc. ACM Conference on
LISP and Functional Programming, 1990.

[20] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multiprogrammed
Computations. Communications of the ACM 9(3), pp. 143-155, 1966.

[21] Christos Dimoulas. Foundations for Behavioral Higher-Order Contracts. PhD disser-
tation, Northeastern University, 2012.

[22] Christos Dimoulas, Robert Bruce Findler, and Matthias Felleisen. Option Contracts. In
Proc. ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, 2013.

[23] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen.
Correct Blame for Contracts: No More Scapegoating. In Proc. ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2011.

152

[24]

[25]

[26]

[27]
(28]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

Christos Dimoulas, Scott Moore, Aslan Askarov, and Stephen Chong. Declarative Poli-
cies for Capability Control. In Proc. IEEE Computer Security Foundations Symposium,
2014, © 2014 IEEE.

Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. Complete Monitors
for Behavorial Contracts. In Proc. European Symposium on Programming, pp. 211-230,
2012.

Tim Disney, Cormac Flanagan, and Jay McCarthy. Temporal Higher-order Contracts.
In Proc. ACM SIGPLAN International Conference on Functional Programming, pp. 176
188, 2011.

Docker. 2013. https://www.docker.com

Sophia Drossopoulou, James Noble, and Mark S. Miller. Swapsies on the Internet —
First steps towards Reasoning about Risk and Trust in the Open World. In Proc. ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security, 2015.

Christopher Dutchyn, David B. Tucker, and Shriram Krishnamurthi. Semantics and
scoping of aspects in higher-order languages. Science of Computer Programming 63(3),
pp. 207-239, 2006.

Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Clift Frey, David Ziegler,
Eddie Kohler, David Maziéres, Frans Kaashoek, and Robert Morris. Labels and Event
Processes in the Asbestos Operating System. In Proc. ACM Symposium on Operating
Systems Principles, 2005.

Ulfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforce-
ment. PhD dissertation, Cornell University, 2004.

Ulfar Erlingsson and Fred B. Schneider. IRM Enforcement of Java Stack Inspection. In
Proc. IEEE Symposium on Security and Privacy, 2000.

David Evans and Andrew Twyman. Flexible policy-directed code safety. In Proc. IEEE
Symposium on Security and Privacy, 1999.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering
with PLT Redex. MIT Press, 2009.

Chen Feng and Grigore Rosu. Java-MOP: A Monitoring Oriented Programming En-
vironment for Java. In Proc. International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2005.

Robert Bruce Findler and Matthias Blume. Contracts as Pairs of Projections. In Proc.
International Symposium on Functional and Logic Programming, pp. 226-241, 2006.

153

https://www.docker.com

[37] RobertBruce Findler and Matthias Felleisen. Contracts for Higher-Order Functions. In
Proc. ACM SIGPLAN International Conference on Functional Programming, pp. 48-59,
2002.

[38] Matthew Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1, 2010. http:
//racket-lang.org/trl/

[39] Martin Gasbichler and Michael Sperber. Processes vs. user-level threads in Scsh. In
Proc. Workshop on Scheme and Functional Programming, 2002.

[40] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Maziéres, John Mitchell,
and Alejandro Russo. Hails: Protecting Data Privacy in Untrusted Web Applications. In
Proc. USENIX Symposium on Operating Systems Design and Implementation, pp. 47-60,
2012.

[41] Alain Giorgetti and Julien Groslambert. JAG: JML Annotation Generation for Verifying
Temporal Properties. In Proc. International Conference on Fundamental Approaches to
Software Engineering, pp. 373-376, 2006.

[42] Li Gong. A Secure Identity-Based Capability System. In Proc. IEEE Symposium on
Security and Privacy, pp. 56-63, 1989.

[43] Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-Grained Interoper-
ability through Contracts and Mirrors. In Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications, pp. 609-624, 2005.

[44] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi.
Relationally-parametric Polymorphic Contracts. In Proc. Symposium on Dynamic Lan-
guages, pp. 29—40, 2007.

[45] Norman Hardy. KeyKOS architecture. ACM SIGOPS Operating Systems Review 19(4),
pp. 8-25, 1985.

[46] Norman Hardy. The Confused Deputy: (or why capabilities might have been invented).
ACM SIGOPS Operating Systems Review 22(4), pp. 35-38, 1998.

[47] John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Miiller, and Matthew Parkin-
son. Behavioral interface specification languages. ACM Computing Surveys 44(3), 2012.

(48] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng
Zhang, and Brian Zill. Ironclad apps: End-to-end security via automated full-system
verification. In Proc. USENIX Symposium on Operating Systems Design and Implemen-
tation, pp. 165-181, 2014.

154

http://racket-lang.org/tr1/
http://racket-lang.org/tr1/

[49] Phillip Heidegger, Annette Bieniusa, and Peter Thiemann. Access Permission Contracts
for Scripting Languages. In Proc. AVM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2012.

[50] Gernot Heiser, Kevin Elphinstone, Thor Kuz, Gerwin Klein, and Stefan M. Petters. To-
wards Trustworthy Computing Systems: Taking Microkernels to the Next Level. ACM
SIGOPS Operating Systems Review 41(4), pp. 3-11, 2007.

[51] Bart Jacobs and Frank Piessens. The VeriFast program verifier. Department of Com-
puter Science, KU Leuven, 2008.

[52] Suman Jana, Donald E. Porter, and Vitaly Shmatikov. TxBox: Building Secure, Efficient
Sandboxes with System Transactions. In Proc. IEEE Symposium on Security and Privacy,
2011.

[53] Limin Jia, Jeftrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr,
and Steve Zdancewic. AURA: A Programming Language for Authorization and Audit.
In Proc. ACM SIGPLAN Conference on Functional Programming, 2008.

[54] Micah Jones and Kevin W. Hamlen. Enforcing IRM Security Policies: Two Case Studies.
In Proc. IEEE Intelligence and Security Informatics Conference, 2009.

[55] Murat Karaorman, Urs Holzle, and John Bruno. jContractor: A Reflective Java Library
to Support Design by Contract. University of California, Santa Barbara, TRCS98-31,

1998.
[56] Paul Ashley Karger. Improving security and performance of capability systems. PhD
dissertation, University of Cambridge, 1988.

[57] Matthias Keil and Peter Thiemann. Treat]S: Higher-order contracts for JavaScript.
arXiv:1504.08110, 2015.

[58] Taesoo Kim and Nickolai Zeldovich. Practical and Effective Sandboxing for Non-root
Users. In Proc. USENIX Annual Technical Conference, pp. 139-144, 2013.

[59] Reto Kramer. iContract - The Java(tm) Design by Contract(tm) Tool. In Proc. Interna-
tional Conference on Technology of Object-Oriented Languages and Systems, 1998.

[60] Maxwell Krohn, Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie Kohler, David
Maziéres, Robert Morris, Michelle Osborne, Steve VanDeBogart, and David Ziegler.
Make Least Privilege a Right (Not a Privilege). In Proc. Conference on Hot Topics in
Operating Systems, 2005.

155

[61] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, Frans Kaashoek, Eddie
Kohler, and Robert Morris. Information Flow Control for Standard OS Abstractions.
In Proc. ACM SIGOPS Symposium on Operating Systems Principles, 2007.

[62] Adam Lackorzynski and Alexander Warg. Taming Subsystems: Capabilities As Univer-
sal Access Control in L4. In Proc. Workshop on Isolation and Integration in Embedded
Systems, pp. 25-30, 2009.

[63] Butler W. Lampson. A Note on the Confinement Problem. Communications of the ACM
16(10), pp. 613-615, 1973.

[64] Butler W. Lampson. Protection. ACM SIGOPS Operating System Review 8(1), pp. 18-
24, 1974.

[65] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: A notation for detailed design.
In Proc. Behavioral Specifications of Businesses and Systems, pp. 175-188, 1999.

[66] Jochen Liedtke. On u-kernel construction. In Proc. ACM Symposium on Operating
Systems Principles, pp. 237-250, 1995.

[67] Peter Loscocco and Stephen Smalley. Integrating Flexible Support for Security Policies
into the Linux Operating System. In Proc. FREENIX Track, USENIX Annual Technical
Conference, 2001.

[68] David Luckham and Friedrich W. Henke. An overview of ANNA - a specification lan-
guage for ADA. IEEE Software 2(9), pp. 9-22, 1985.

[69] LXC. 2008. https://linuxcontainers.org

[70] Sergio Mafteis, John C. Mitchell, and Ankur Taly. Object Capabilities and Isolation of
Untrusted Web Applications. In Proc. IEEE Symposium on Security and Privacy, pp.
125-140, 2010.

[71] Dino Mandrioli and Bertrand Meyer. Advances in Object-Oriented Software Engineer-
ing. Prentice Hall, 1992.

[72] Claude Marché, Christine Paulin-Mohring, and Xavier Urbain. The Krakatoa tool for
certification of Java/JavaCard programs annotated in JML. Journal of Logic and Algebraic
Programming 58(1), pp. 89-106, 2004.

[73] Adrian Mettler, David Wagner, and Tyler Close. Joe-E: A Security-Oriented Subset of
Java. In Proc. USENIX Symposium on Networked Systems Design and Implementation,
2010.

[74] Bertrand Meye. Eiffel: The Language. Prentice Hall, 1992.

156

https://linuxcontainers.org

[75] Bertrand Meyer. Applying “Design by Contract”. Computer 25(10), pp. 40-51, 1992.

[76] Mark S. Miller, James E. Donnelley, and Alan H. Karp. Delegating Responsibility in
Digital Systems: Horton’s “Who Done It?”. In Proc. USENIX Workshop on Hot Topics in
Security, 2007.

[77] Mark S. Miller, Chip Morningstar, and Bill Frantz. Capability-based Financial Instru-
ments. In Proc. International Conference on Financial Cryptography, pp. 349378, 2000.

[78] Mark S. Miller, Mike Samuel, Ben Laurie, Thab Awad, and Mike Stay. Caja: Safe active
content in sanitized JavaScript. Google, 2008.

[79] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability Myths Demolished.
Johns Hopkins University, SRL2003-02, 2003.

[80] Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. PhD dissertation, Johns Hopkins University, 2006.

[81] Scott Moore, Christos Dimoulas, Dan King, and Stephen Chong. Shill: A Secure Shell
Scripting Language. In Proc. USENIX Symposium on Operating Systems Design and
Implementation, 2014.

[82] James H. Morris Jr. Protection in Programming Languages. Communications of the
ACM 16(1), 1973.

[83] Toby Murray. Analysing the security properties of object-capability patterns. PhD dis-
sertation, University of Oxford, 2010.

[84] Toby Murray and Duncan Grove. Non-Delegatable Authorities in Capability Systems.
Journal of Computer Security 16(6), pp. 743-759, 2008.

[85] Peter G. Neumann and Richard J. Feiertag. PSOS revisited. In Proc. Computer Security
Applications Conference, pp. 208-216, 2003.

[86] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman, and Jean-Louis Lanet.
Enforcing High-Level Security Properties for Applets. In Proc. International Confer-
ence on Smart Card Research and Advanced Applications, World Computer Congress,
TC8/WG8.8 & TC11/WG11.2, pp. 1-16, 2004.

[87] Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin W. Hamlen, and V. N.
Venkatakrishnan. Between Worlds: Securing Mixed JavaScript/ActionScript Multi-
party Web Content. IEEE Transactions on Dependable and Secure Computing 12(4),

PP 443-457, 2015.

157

[88] Reinhold Ploesch and Josef Pichler. Contracts: From Analysis to C++ Implementa-
tion. In Proc. International Conference on Technology of Object-Oriented Languages and
Systems, 1999.

[89] Gordon D. Plotkin. Call-by-name, call-by-value, and the A-calculus. Theoretical Com-
puter Science 1(2), pp. 125-159, 1975.

[90] Gordon D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science 5(3), pp. 223-255, 1977.

[91] Joe Gibbs Politz, Arjun Guha, and Shriram Krishnamurthi. Type-based Verification of
Web Sandboxes. Journal of Computer Security 22(4), pp. 511-565, 2014.

[92] David D. Redell. Naming and Protection in Extensible Operating Systems. PhD disser-
tation, University of California at Berkeley, 1974.

[93] Jonathan Allen Rees. A Security Kernel Based on the Lambda-Calculus. PhD disserta-
tion, Massachusetts Institute of Technology, 1995.

[94] John C. Reynolds. GEDANKEN - a simple typeless language based on the principle of
completeness and the reference concept. Communications of the ACM 13(5), pp. 308-
319, 1970.

[95] Henry Gordon Rice. Classes of recursively enumerable sets and their decision problems.

Transactions of the American Mathematical Society 74(2), pp. 358-366, 1953.

[96] David S. Rosenblum. A Practical Approach to Programming with Assertions. IEEE
Transactions on Software Engineering 21(1), pp. 19-31, 1995.

[97] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett
Witchel. Laminar: Practical Fine-grained Decentralized Information Flow Control. In
Proc. ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pp. 63-74, 2009.

[98] Jerome H. Saltzer. Protection and the Control of Information Sharing in Multics. Com-
munications of the ACM 17(7), pp. 388-402, 1974.

[99] Fred B. Schneider. Enforceable Security Policies. ACM Transactions on Information and
System Security 3(1), pp. 30-50, 2000.

[100] Christophe Schollier, Eric Tanter, and Wolfgang De Meuter. Computational Contracts.
Science of Computer Programming 98(3), pp. 360-375, 2015.

[101] Mark Seaborn. PLASH: the Principle of Least Authority Shell. 2007. http://www.
cs.jhu.edu/~seaborn/plash/html/

158

http://www.cs.jhu.edu/~seaborn/plash/html/
http://www.cs.jhu.edu/~seaborn/plash/html/

[102] Jonathan S. Shapiro, Michael Scott Doerrie, Eric Northup, Swaroop Sridhar, and Mark S.
Miller. Towards a Verified, General-Purpose Operating System Kernel. In Proc. NICTA
Invitational Workshop on Operating System Verification, pp. 1-19, 2004.

[103] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast capability
system. In Proc. ACM Symposium on Operating Systems Principles, pp. 170-185, 1999.

[104] Jeremy G. Siek and Walid Taha. Gradual Typing for Functional Languages. In Proc.
Workshop on Scheme and Functional Programming, 2006.

[105] Jan Smans, Bart Jacobs, and Frank Piessens. Static verification of code access security
policy compliance of .NET applications. In Proc. International Conference on .NET, pp.
1-12, 2005.

[106] Alfred Speissens. Patterns of Safe Collaboration. PhD dissertation, Catholic University
of Louvain, 2007.

[107] Brad Spengler. Grsecurity. 2003. https://grsecurity.net

[108] Vincent St-Amour, Leif Andersen, and Matthias Felleisen. Feature-specific profiling. In
Proc. International Conference on Compiler Construction, pp. 49-68, 2015.

[109] Guy Lewis Steele Jr. Macaroni is Better Than Spaghetti. In Proc. Symposium on Artificial
Intelligence and Programming Languages, 1977.

[110] Guy Lewis Steele Jr. and Gerald Jay Sussman. The Revised Report on SCHEME: A
Dialect of LISP. Massachusetts Institute of Technology Artificial Intelligence Laboratory,
AIM-452, 1978.

[111] Marc Stiegler and Mark S. Miller. A Capablity Based Client: The DarpaBrowser.
Combex, Inc., BAA-00-06-SNK, 2002.

[112] T. Stephen Strickland, Christos Dimoulas, Asumu Takikawa, and Matthias Felleisen.
Contracts for First-Class Classes. Transactions on Programming Languages and Systems
35(3), pp- 11-58, 2013.

[113] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt.
Chaperones and Impersonators: Run-time Support for Contracts on Higher-Order,
Stateful Values. In Proc. ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pp. 943-962, 2012.

[114] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing Stateful Authorization and Infor-
mation Flow Policies in Fine. In Proc. European Conference on Programming Languages
and Systems, 2010.

159

https://grsecurity.net

[115] Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce Findler, Matthew Flatt, Sam
Tobin-Hochstadt, and Matthias Felleisen. Towards Practical Gradual Typing. In Proc.
European Conference on Object-Oriented Programming, 2015.

[116] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and
Matthias Felleisen. Gradual Typing for First-Class Classes. In Proc. ACM Conference
on Object-Oriented Programming, Systems, Languages and Applications, pp. 793-810,
2012.

[117] Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. Constraining De-
limited Control with Contracts. In Proc. European Conference on Programming Lan-
guages and Systems, pp. 229-248, 2013.

[118] Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of
Typed Scheme. In Proc. ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 395-406, 2008.

[119] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt, and
Matthias Felleisen. Languages as Libraries. In Proc. ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 132-141, 2011.

[120] Rodolfo Toledo, Angel Nunez, Eric Tanter, and Jacques Noye. Aspectizing Java Access
Control. IEEE Transactions on Software Engineering 38(1), 2012.

[121] Kerry Trentelman and Marieke Huisman. Extending JML specifications with temporal
logic. Algebraic Methodology and Software Technology, 2002.

[122] David Wagner and Dean Tribble. A Security Analysis of the Combex DarpaBrowser
Architecture. Combex, Inc., 2002. http://www.combex.com/papers/
darpa-review/

[123] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward Felten. Extensible Security Ar-
chitectures for Java. In Proc. ACM Symposium on Operating Systems Principles, 1997.

[124] Dan S. Wallach and Edward W. Felten. Understanding Java Stack Inspection. In Proc.
IEEE Symposium on Security and Privacy, pp. 52-63, 1998.

[125] Robert N. M. Watson. A Decade of OS Access-Control Extensibility. Communications
of the ACM 56(2), pp. 52-63, 2013.

[126] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Capsicum:
Practical Capabilities for UNIX. In Proc. USENIX Security Symposium, pp. 29—46, 2010.

160

http://www.combex.com/papers/darpa-review/
http://www.combex.com/papers/darpa-review/

[127] Robert N. M. Watson and Chris Vance. The TrustedBSD MAC framework: Extensible
kernel access control for FreeBSD 5.0. In Proc. USENIX Annual Technical Conference,
pp. 285-296, 2003.

[128] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. Making
Information Flow Explicit in HiStar. In Proc. USENIX Symposium on Operating Systems
Design and Implementation, 2006.

161

	1 Introduction
	2 Behavioral Contacts
	2.1 Contracts by example
	2.2 A Model for Contracts
	2.3 Correct Blame and Complete Monitoring
	2.4 Related Work

	3 Capability Contracts
	3.1 Capability-safety and Complete Monitoring
	3.2 From Patterns to Contracts
	3.3 Related Work

	4 A Secure Shell Scripting Language
	4.1 Design
	4.2 Implementation
	4.3 Evaluation
	4.4 Related Work

	5 Authorization Contracts
	5.1 Authority Environments
	5.2 A Framework for Access Control
	5.3 Putting Authorization Contracts to Work
	5.4 Case studies
	5.5 Related Work

	6 Conclusion
	References

